
Journal of Economic Literature
Vol. XXXVII (June 1999), pp. 633–665

McCullough and Vinod: The Numerical Reliability of Econometric Software

The Numerical Reliability
of Econometric Software

B. D. MCCULLOUGH
and

H. D. VINOD1

1. Introduction

Numerical software is central to our comput-
erized society; it is used . . . to analyze fu-
ture options for financial markets and the
economy. It is essential that it be of high
quality; fast, accurate, reliable, easily moved
to new machines, and easy to use. (Ford and
Rice 1994)

APART FROM COST considerations,
economists generally choose their

software by its user-friendliness or for
specialized features. They rarely worry
whether the answer provided by the soft-
ware is correct (i.e., whether the soft-
ware is reliable). The economist, whose
degree is not in computer science, can
hardly be faulted for this: is it not the job
of the software developer to ensure reli-
ability? Caveat emptor. Would a re-
viewer notice if the software is inaccu-
rate? We think not. We surveyed five
journals that regularly publish reviews of
econometric software. For the years

1990–97, over 120 reviews appeared. All
but three paid no attention to numerical
accuracy, and only two applied more
than a single test of numerical accuracy
(Michael Veall 1991, and McCullough
1997, but see also Vinod 1989 and Colin
McKenzie 1998). Since computation is
the raison d’etre of an econometric pack-
age, this lacuna is all the more puzzling
given the failure of many statistical pack-
ages to pass even rudimentary bench-
marks for numerical accuracy (James Le-
sage and Stephen Simon 1985; Bernhard,
Herbold, and Meyers 1988; Günther
Sawitkzi 1994b; Udo Bankhofer and An-
dreas Hilbert 1997). One would think
that similar assessments of econometric
software have been conducted, but the
economics profession has no history of
benchmarking econometric software.

1.1 Econometric Software Has Bugs

Consider full information maximum
likelihood (FIML) estimation of Klein’s
Model I using Klein’s original data. The
consumption (Ct), investment (It), and
wage (Wt) equations are given by

 Ct = α0 + α1(Wt
p + Wt

g) + α2Pt + α3Pt−1

 It = β0 + β1Pt + β2Pt−1 + β3Kt−1

 Wt = γ0 + γ1Et + γ2Et−1 + γ3(t − 1931).
633

1 McCullough: Federal Communications Com-
mission. Vinod: Fordham University. For com-
ments and useful suggestions, thanks to Reginald
Beardsley, Robert Cavazos, Francisco Cribari,
Douglas Dacy, Jerry Duvall, William Greene, David
Kendrick, Robert Kieschnick, David Letson, Charles
Renfro, and Janet Rogers. We are especially in-
debted to Frank Wolak and two referees, who made
substantial contributions. The views expressed
herein are the authors’, and not necessarily those
of the Commission. Email: bmccullo@fcc.gov and
vinod@murray.fordham.edu

William Greene (1997, p. 760), Ernst
Berndt (1990, p. 553), and Giorgio
Calzolari and Lorenzo Panattoni (1988)
present FIML parameter estimates and
standard errors as found in Table 1. Note
that the magnitude, significance, and
even sign of the parameter estimates dif-
fer. Which set of estimates, if any, is cor-
rect? How much faith can be placed in
the FIML estimates reported in journal
articles?

As another example, Michael Lovell
and David Selover (1994) attempted to
fit a Cochrane-Orcutt AR(1) correction
to three data sets by means of four dif-
ferent packages. For the first data set,
estimates of ρ ranged from 0.36 to
–0.79, with slope estimates for the pa-
rameter of interest ranging from –35.1
to –30.96. For the second data set, ρ
estimates ranged from 0.31 to 0.93,

with slope estimates ranging from –2.83
to 3.06. For the third data set, ρ esti-
mates ranged from 0.84 to 1.001, with
slope estimates ranging from 0.26 to
0.92. Sometimes these differences
could be traced to differences in algo-
rithms, in which case the differences
are acceptable. Other times, they could
not. Paul Newbold, Christos Agiaklo-
glou and John Miller (1994) used 15
packages to fit ARMA models to five
separate time series, with similar re-
sults. They also documented cases in
which two packages generate the same
parameter estimates, but markedly dif-
ferent forecasts. This has important im-
plications for estimates of the long-run
persistence of macroeconomics shocks
(i.e., cumulative impulse response
functions), as in John Campbell and
N. Gregory Mankiw (1987). Such

TABLE 1
VARIOUS FIML RESULTS FOR KLEIN’S MODEL I

(standard errors in parentheses, asterisk denotes 5% significance)

αo a1 a2 α3

Berndt 17.165*
(7.363)

0.791*
(0.066)

−0.062
(1.09)

0.310
(0.629)

Greene 17.8*
(2.12)

0.853*
(0.047)

−0.214
(0.096)

0.351*
(0.101)

C & P 18.34*
(2.485)

0.8018*
(0.0359)

−0.2324
(0.3120)

0.3857
(0.2174)

βo β1 b2 β3

Berndt 29.837
(23.77)

−0.625
(1.48)

1.020
(0.999)

−0.173
(0.106)

Greene 17.2*
(6.47)

0.130
(0.137)

0.140)
(0.613)

−0.136*
(0.038)

C & P 27.26*
(7.938)

−0.8010
(0.4914)

1.052*
(0.3525)

−0.1481*
(0.0299)

γo γ1 g2 γ3

Berndt 4.790
(4.82)

0.278*
(0.084)

0.257*
(0.052)

0.213*
(0.078)

Greene 1.41
(0.943)

0.498*
(0.018)

0.087*
(0.015)

0.403*
(0.021)

C & P 5.794*
(1.804)

0.2341*
(0.0488)

0.2847*
(0.0452)

0.2348*
(0.0345)

634 Journal of Economic Literature, Vol. XXXVII (June 1999)

important results might be quite sen-
sitive to the choice of software, a
possibility overlooked in textbooks.

When discussing the solution to non-
linear estimation problems, textbooks
invariably mention that for a given
problem, one algorithm might yield a
solution, while another algorithm might
fail to produce a solution. Just as invari-
ably, no mention is made that when
both algorithms solve the problem, one
solution is likely to be more accurate
than the other. As our FIML example
makes clear, there is a distinct possibil-
ity that neither “solution” is correct, but
this issue is never raised. Neither do
textbooks warn students that even sim-
ple linear procedures, such as calcula-
tion of the correlation coefficient, can
be horrendously inaccurate.

Suppose a multiple regression pro-
duced a high R2 with low t-statistics. A
first thought might be “multicollinear-
ity.” Standard practice in this situation
is to compute the correlation matrix of
the independent variables. Any conclu-
sion regarding the correlation of the in-
dependent variables would be critically
dependent upon the package used.
Leland Wilkinson (1985, test II-D) has
a test for the accuracy of computing a
correlation matrix. His six variables (X,
BIG, LITTLE, HUGE, TINY, and
ROUND) all are linear transformations
of each other, and so are perfectly cor-
related. Therefore the correlation ma-
trix should be all units. The standard
deviation of each variable should be
2.738 raised to some (possibly negative)
power of ten. In Table 2 the output of
four popular econometric packages is
presented.2 While package “X1” gives

the correct answer, programs “X2” and
“X3” do not. Package “X4” even
manages to report correlation co-
efficients in excess of unity! We
also note that programs “X2” and “X4”
do not correctly calculate all the stan-
dard deviations for the variables in
question.

1.2 Why Has No One Noticed?

It is understandable that economists
have paid little attention to whether or
not econometric software is accurate.
Until recently, econometrics texts rarely
discussed computational aspects of solv-
ing econometric problems (but see
Russell Davidson and James MacKin-
non 1993, §1.5; Greene 1997, §5.2).
Many textbooks convey the impression
that all one has to do is use a computer
to solve the problem, the implicit and
unwarranted assumptions being that the
computer’s solution is accurate and that
one software package is as good as any
other. Statisticians are more likely to be
versed in statistical computing and nu-
merical analysis and to know that accu-
racy cannot be taken for granted. Yet
even reviews of statistical software pay
little attention to accuracy. In some
quarters, complaints are raised against
purveyors of inaccurate software, but as
economists we take a more sanguine
view. While the purveyance of inaccu-
rate software is perhaps regrettable, it
is predictable: the market provides us
not necessarily with what we need, but
with what we want; and we want
speed, user-friendliness, and the latest
econometric features.

The market forces that militate
against the supply of accurate software
are twofold. First, how often do ad-
vertisements for econometric software

2 We have elected not to identify software pack-
ages by name for two reasons. First, we regard
published software reviews as a more suitable ve-
hicle for providing full and fair assessments of in-
dividual packages. Second, some developers are
remarkably quick to respond to reports of errors,

and many of the errors we recount were fixed even
before this article went to press.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 635

feature “speed of solution”3 as opposed
to “accuracy of solution”? Frequently
there is a trade-off between speed and
accuracy, and often the fastest way to
compute is not the most accurate way to
compute. William Kahan (1997) has
noted the deleterious effects of this
overarching emphasis on speed at the
expense of accuracy, and in a field
where one might hope that consumers

would know better: computer science.
If the same affliction bedevils the pro-
fession of computer science, the eco-
nomics profession can hardly be
faulted. Second, not only consumers’
emphasis on speed, but consumers’ em-
phasis on new features militates against
more accurate econometric software.
Much of software development is the
incorporation of the latest econometric
procedures. Designing and testing soft-
ware for accuracy is extremely labor in-
tensive, and the developer who seeks to
ensure accuracy may have to delay im-
plementation of new features. Thus, an
accuracy-enhanced upgrade would lack
features possessed by other products.

TABLE 2
MATRICES OF CORRELATION COEFFICIENTS

X BIG LITTLE HUGE TINY ROUND st. dev.

X 1.0 2.738
BIG 1.0 1.0 2.738
LITTLE 1.0 1.0 1.0 2.738E−8
HUGE 1.0 1.0 1.0 1.0 2.738E+12
TINY 1.0 1.0 1.0 1.0 1.0 2.738E−12
ROUND 1.0 1.0 1.0 1.0 1.0 1.0 2.738

“Package X1” (correct answer)

X 1.0 2.738
BIG 0.867 1.0 4.216
LITTLE 0.863 0.614 1.0 3.518E−8
HUGE 1.0 0.866 0.836 1.0 2.738E+12
TINY 1.0 0.866 0.836 1.0 0.0 2.738E−12
ROUND 1.0 0.866 0.836 1.0 1.0 1.0 2.738

“Package X2”

X 0.999 2.738
BIG 0.645 1.0 2.738
LITTLE 0.819 0.577 1.0 2.738E−8
HUGE 1.0 0.645 0.820 1.0 2.738E+12
TINY 1.0 0.645 0.820 1.0 1.0 2.738E−12
ROUND 0.999 0.645 0.820 1.0 1.0 0.999 2.738

“Package X3”

X 1.0 2.738
BIG 1.129 1.127 2.424
LITTLE 1.007 1.137 1.013 2.87E−8
HUGE 1.0 1.130 1.007 1.0 2.738E+12
TINY 1.0 1.130 1.007 1.0 0.0 2.738E−12
ROUND 1.0 1.130 1.007 1.0 1.0 1.0 2.738

“Package X4”

3 Some common measures of “speed” as found
in advertisements and software reviews are mis-
leading, such as “the number of seconds required
to invert a 100x100 matrix 1000 times.” Such loop-
ing procedures can exaggerate the influence of the
cache dramatically, especially when the cache hit
rate reaches 100 percent after the first loop. See
Weicker (1984).

636 Journal of Economic Literature, Vol. XXXVII (June 1999)

In a market that demands speed and
new features with little emphasis on
accuracy, the developer who attempts
to enhance accuracy could lose out to
the competition. When numerical accu-
racy is not a criterion for evaluation
(e.g., Jeffrey MacKie-Mason 1992), a
clear signal is sent to software devel-
opers that allocating resources toward
numerical accuracy is not a profit-
maximizing strategy. Developers are
merely satisfying demand—if we do not
demand some essential feature like
numerical accuracy, it is no one’s fault
but our own.

We believe that if the consumers of
econometric software were aware of the
extent of numerical inaccuracies in
econometric software, developers would
have the incentive to spend more time
ensuring accuracy, and could do so
without losing market share. To this
end, then, a goal of this article is to
show consumers of econometric soft-
ware that accuracy cannot be taken for
granted, and that conversations about
econometric software should begin with
accuracy, and only then turn to speed
and user-friendliness. This, in turn, will
provide developers the incentive to
supply that accuracy.

1.3 Benchmarking

Thirty years ago James Longley
(1967) worked out by hand the solution
to a regression of “total employment”
on GNP, the GNP deflator, Unemploy-
ment, Size of the Armed Forces, Popu-
lation, and Time, for the sixteen years
1947–62, and he did so to ten signifi-
cant digits. He compared these results
with those from a variety of mainframe
regression packages and discovered that
most programs produced drastically in-
correct answers: “With identical inputs,
all except four programs produced out-
puts which differed from each other in

every digit” (Longley 1967, p. 822).
One program gave one digit of
accuracy, two gave four-digit accu-
racy, and another gave either zero
or one-digit accuracy for each coeffi-
cient. Longley traced the source of
many failures to poor choices of algo-
rithms. While Longley wrote thirty years
ago, the lesson learned remains: soft-
ware reliability cannot be taken for
granted.

The statistical literature has a long
history of concern for software reliabil-
ity (Ivor Francis, Richard Heiberger,
and Paul Velleman 1975; Albert Beaton,
Donald Rubin, and John Barone 1976;
Francis 1981, 1983; Eddy et al. 1981),
and this concern has produced many
benchmarks. In addition to the Longley
Benchmark, Roy Wampler (1980) pro-
posed an entire suite of linear regres-
sion benchmarks. Lesage and Simon
(1985) and Simon and Lesage (1988)
constructed benchmark tests for uni-
variate summary statistics and the
analysis of variance. Finally, Alan El-
liott, Joan Reisch and Nancy Campbell
(1989) and P. Lachenbruch (1983) pro-
vided benchmarks for elementary statis-
tical software packages. This trend most
recently culminated in Sawitzki (1994),
who proposed a testing strategy for as-
sessing the reliability of statistical soft-
ware. Recognizing that stringent testing
is worthwhile only after entry-level tests
are passed, he proposed L. Wilkinson’s
(1985) tests as a set of minimal stan-
dards. Sawitzki (1994a), Wilkinson
(1994), and Bankhofer and Hilbert
(1997) applied the Wilkinson tests to
several well-known statistical packages,
and the results were less than impres-
sive: all products failed some of these
entry-level tests. McCullough (1999b)
applied the Wilkinson Tests to several
econometric packages, which fared
about as well as the statistical packages
did. That is to say, there is definite

 McCullough and Vinod: The Numerical Reliability of Econometric Software 637

room for improvement in the numerical
accuracy of econometric software.

With respect to accuracy and eco-
nomics, a common sentiment is that
economic data are accurate only to a
few digits, and more accuracy than that
is not necessary, so worrying about 10
digits of accuracy in econometric calcu-
lations is pointless. We partially agree
with this view, but make an important
distinction. As expressed above, this
sentiment conflates how output is calcu-
lated and to what end the output is
used. A better expression is: since eco-
nomic data are accurate only to a few
digits, reporting 10 digits of a final an-
swer is pointless; however, all interme-
diate calculations should be carried out
to as many digits as possible. The di-
chotomy between calculation of output
and use of output is important. It may
well be the case that there is no practi-
cal difference between two packages’
estimates of a correlation coefficient,
ρ̂1 = 0.95 and ρ̂2 = 0.92. However, if the
exact result is 0.95 and a good imple-
mentation of a good algorithm will
achieve that result, then package two’s
correlation routine is atrocious. This is
because it produces only one accurate
digit in a setting where even a fair im-
plementation of a fair algorithm will
produce seven digits of accuracy in dou-
ble precision. Specifically, ρ̂2 = 0.92 is
evidence of bad software.

Some readers might be dismayed at
becoming aware of the extent of inaccu-
racies in econometric software, and
their confidence in the reliability of nu-
merical computation might be shaken.
The inaccuracies we recount have long
existed in all manner of computational
software, econometric and other. Only
recently have the tools for diagnosing
and remedying many of these deficien-
cies become available, so only recently
are users and developers becoming
more aware of these problems. The

foreword to a recent text on the subject
(Francoise Chaitin-Chatelin and Valérie
Frayssé 1996) addresses this precise
point: “In some sense, that awareness
[of inaccuracy] is no bad thing, so long
as the positive aspects of the under-
standing of finite precision computation
are appreciated.”

Before finite precision computation
can be appreciated, some acquaintance
with how computers handle numbers is
necessary. Therefore, Section Two dis-
cusses computer arithmetic and errors
in computation. It emphasizes: (1) that
two algebraically equivalent methods
may have drastically different effects
when implemented on a computer; and
(2) that “small” differences in the input
or the algorithm can produce “large”
changes in output. Section Three docu-
ments inaccuracies in existing econo-
metric software, and suggests useful
benchmark collections for testing gen-
eral routines. Section Four argues that
specialized routines, specific to eco-
nomics, need benchmarks. Section Five
discusses random number generators
and how to test them. Section Six
discusses statistical distributions (e.g.,
for calculating p-values) and how to
test them. Section Seven offers the
conclusions.

2. Computers and Software

Computers are exceedingly precise
and can make mistakes with exquisite
precision. Certain tasks which are fre-
quently repeated, such as rounding a
sum, need to be exceedingly accurate.
Consider rounding to three decimals
a number whose magnitude is about
one thousand. Should 1000.0006 be
rounded up to 1000.001 or rounded
down to 1000.000? Perhaps the answer
is obvious, but what if the number in
question was 1000.0005? Both rounding
up and rounding down will inject a bias

638 Journal of Economic Literature, Vol. XXXVII (June 1999)

into the final result, so perhaps the
answer is not so obvious.4

Improper attention to the method of
rounding can produce disastrous re-
sults. The Wall Street Journal (Novem-
ber 8, 1983, p. 37) reported on the Van-
couver Stock Exchange, which created
an index much like the Dow-Jones In-
dex. It began with a nominal value of
1,000.000 and was recalculated after
each recorded transaction by calcula-
tion to four decimal places, the last
place being truncated so that three
decimal places were reported. Truncat-
ing the fourth decimal of a number
measured to approximately 103 might
seem innocuous. Yet, within a few
months the index had fallen to 520,
while there was no general downturn in
economic activity. The problem, of
course, was insufficient attention given
to the method of rounding. When
recalculated properly, the index was
found to be 1098.892 (Toronto Star,
November 29, 1983).

2.1 Computer Arithmetic

To a certain degree, all computers
produce “incorrect” answers due to the
computer’s lack of an infinite word
length to store numbers. A computer’s
arithmetic is different from the one
people apply with paper and pencil.
While people calculate using decimal
(base-10) representations for numbers,
computers calculate using base-2. As an
example, the decimal number 23 has
the base-2 representation 10111 since
1(24) + 0(23) + 1(22) + 1(21) + 1(20) = 23,
which is denoted φ2(23) = 10111. Simi-
larly, φ2(10) = 1010 and the decimal 0.5
has an exact base-2 representation
φ2(0.5) = 0.1 since 0.5 = 1(2−1). The deci-
mal 0.1 has an infinite (but periodic)

binary representation with period four,
φ2(0.1) = 0.000110011—— where an overbar
indicates infinite repetition. However,
a computer has finite storage. If it has
23 bits of storage to the right of the
decimal, it will hold the decimal 0.1
in memory as the binary number
φ̂2(0.1) = 0.00011001100110011001100110
where φ̂2(⋅) is the stored version of φ2(⋅).
Since ϕ2(0.1) is an infinitely repeating
number, the stored version φ̂2(0.1) is not
exactly equal to the decimal 0.1 it rep-
resents. If the stored binary number
φ̂2(0.1) is reconverted to decimal, it be-
comes 0.09999999403953. Thus, the
computer “sees” 0.1 as something
slightly less than 0.1. This has some in-
teresting implications. First, it implies
that rescaling a number by 10 can cause
a loss of precision, since the exponent is
stored base-2 rather than base-10. Sec-
ond, reading data and performing a
units conversion is different from read-
ing already-converted data, a most dis-
comfiting situation for those who en-
counter it. These problems arise not
due to the use of base-2 per se, but due
to the combination of base-2 and finite
precision.

A floating point binary number has a
fixed number of places, say 24, with a
decimal point which can be placed
anywhere. For example, φ̂2(10) =
00000000000000000001010.0, φ̂2(0.1) =
0.00011001100110011001100 and the
base-2 representation of their sum is
φ̂2(10.1) = 1010.0001100110011001100.
When this sum is reconverted to deci-
mal, it becomes 10.0999985. A real
number is represented in the floating
point format: s × M × BE; where s is the
sign (zero for positive or unity for nega-
tive), B is the base of the representation
(usually 2), E is the exponent, and M is
a positive integer mantissa. A useful
way to view this is as M being a string of
zeroes and ones, with BE placing a deci-
mal point somewhere in the string (or

4 A common solution is to round to the nearest
even digit, e.g., 1.005 becomes 1.00 while 1.015
becomes 1.02. This scheme is called “round-to-
even.”

 McCullough and Vinod: The Numerical Reliability of Econometric Software 639

to the left or right of the string, implic-
itly padding with zeroes). If the leading
digit is non-zero, the number is said to
be normalized. The representations of
φ̂2(10) and φ̂2(0.1) above are not normal-
ized, whereas that of φ̂2(10.1) is. While
under certain circumstances interme-
diate calculations might involve non-
normalized numbers, results are stored
in normalized format. Since the first digit
in normalized format is always unity, we
get an extra bit for the mantissa,
referred to as the “hidden bit.” 5

For single-precision, a 32-bit word
might be partitioned as follows: one bit
for the sign, eight bits for the exponent
(which can take integer values from
–126 to 127) and 23 bits for the man-
tissa which, with the hidden bit, yields
a 24-bit mantissa, sometimes referred
to as “23 + 1” to indicate that the 24th
bit comes from the hidden bit. The
magnitudes of such single-precision
floating point numbers are constrained
to lie between 2−126 ≈ 1 .2 × 10−38 and
(2 − 2−23) × 2127 ≈ 3.4 × 1038, the range of
representable numbers, with the under-
flow threshold and overflow threshold
as lower and upper limits, respectively.

Let R be the familiar real number
line, and let F be the representable
numbers. Let fl(x) be the floating point
representation of x. That is, fl(x) is the
number in F that corresponds to some
number in x ∈ R. For example, if x =
0.1 then fl(x) = 0.09999999403953.. Thus
it is not always true that x = fl(x), i.e.,
that x ∈ R ⇒ x ∈ F. Even when x, y ∈ F
it does not follow that (x + y) ∈ F. This is
a first suggestion that computer arith-
metic is different from pencil-and-pa-
per arithmetic. Let us define floating
point addition by fl(x + y). Ideally,
fl(x + y) is the number in F that is
closest to x + y ∈ R. The difference,

fl(x + y) − (x + y), is rounding error, and
this difference depends in part on the
values of x and y since the repre-
sentable numbers are not uniformly dis-
tributed in base-10. In single precision,
there are 8,388,607 floating point num-
bers between 1 and 2, while between
1023.0 and 1024.0 there are 8,191 float-
ing point numbers. Thus, it can be ex-
pected that numbers with larger magni-
tudes are more susceptible to rounding
error than numbers with smaller magni-
tudes; this supports the recentering and
scaling of numbers to mitigate the ad-
verse effects of floating point arithme-
tic, as is frequently suggested in discus-
sions of collinear data. While frequently
it is true that fl(x + y)∈F, much less fre-
quently is it true that fl(x ⋅ y)∈F for
floating point multiplication, since the
product involves 2s or 2s – 1 significant
digits, which extend beyond the s-digit
mantissa. Therefore, floating point mul-
tiplication is much more likely to be
contaminated by rounding error than
floating point addition. All this implies
that computer arithmetic, contrary to
the familiar pencil-and-paper arithme-
tic, is neither associative nor distrib-
utive, though it is commutative. One
consequence of this, shown in sub-
section 2.3, is that absent special pre-
cautions, it is possible for the logical
statement (x = y) to evaluate “false”
while (x – y = 0) evaluates “true.” In
such a case, logical tests of equality
cannot be trusted.

Let ⊕ denote any of the four arithme-
tic operations: + − × ÷ and let fl(x ⊕ y)
be the floating point representation of
x ⊕ y. Then machine precision, ε, is the
smallest value satisfying

s(x ⊕ y) − (x ⊕ y) ≤ εx ⊕ y (1)

i.e., it is the smallest value for which (1)
holds for all ⊕ and for all x and y such
that the magnitude of x ⊕ y is neither
greater than the overflow threshold nor

5 Not all computers use the hidden bit, but it is
part of IEEE-754.

640 Journal of Economic Literature, Vol. XXXVII (June 1999)

less than the underflow threshold. For
standard single precision, machine epsi-
lon is εS = 2−24 ≈ 5.96 ⋅ 10−8 and for double
precision, which uses a 64-bit word-
length, it is εD = 2−53 ≈ 1.11 ⋅ 10−16. Accu-
racy refers to the error of an approxima-
tion, whereas precision refers to the
accuracy with which basic arithmetic op-
erations are performed. They are the
same for scalar computation, e.g.,
c = a ⋅ b, but precision can be better than
accuracy for nonscalar operations such as
matrix inversion; since precision refers
to the result of a single calculation, while
accuracy can refer to the result of several
calculations.

2.2 Errors in Computation

When two floating point numbers are
added, the smaller (in magnitude) num-
ber is right-shifted until the exponents
of the two numbers are equal, and then
added (this procedure is referred to as
normalization). While this method does
not waste any bits of the mantissa and
hence preserves accuracy, the least sig-
nificant bits of the smaller number are
lost when it is right-shifted. This is an
example of roundoff error or rounding
error. Roundoff error is a function
of hardware and exists because a com-
puter has a finite number of significant
digits with which to represent real num-
bers. For given numbers x, y, and z,
when the computer is asked to calculate
xy + z what it actually returns is
w = (xy(1 + α) + z)(1 + β) where α and β
are rounding errors. Usually there are
bounds for the rounding errors, such as
α < 2−53 and β < 2−53, and these can
be used to bound the total error be-
tween the computed w and the actual
value of xy + z. Such bounds are neces-
sary because clearly w ≠ xy + z due to
rounding error, and in fact E[w] ≠ xy + z.
Unknown distributional forms and
correlations hamper statistical analysis

of rounding errors.6 It makes sense
that there are only bounds: if α and β
were actually known, they could be
subtracted off to yield an exact result.

Even when two numbers are precise
to several digits, a single arithmetic op-
eration can introduce sufficient error to
ensure that the result is precise to no
significant digits. One such occasion is
the special case of rounding error called
cancellation error, which occurs when
two nearly equal numbers are sub-
tracted. Nicholas Higham (1996, p. 10)
provides an illustrative example. For
f(x) = (1 − cosx) ⁄ x2 let x = 1.2 × 10−5. To ten
significant digits, cos x = 0.9999999999,
so 1 – cos x = 0.0000000001 and f(x) =
0.6944 . . . , though by the definition
of cos x the following inequality is true:
0 ≤ f(x) ≤ 0.5 for all x. The subtraction
is exact, but the error in the sole non-
zero digit in 0.0000000001 is of the
same order as the true answer, and thus
the truth is not visible in the final an-
swer. Determining when such adverse
results can and cannot happen is the
field of error analysis: what proportion
of the final answer is truth and what
proportion is error. Underlying the
notion of error analysis is the idea
of how accurately each calculation is
performed, and how the error from
each calculation propogates through
subsequent calculations.

Even if computers had an infinite
number of significant digits and so had
no roundoff error, another type of error

6 Make the simplifying assumption that round-
ing errors are independent of x, y and z (they are
not, because the floating point numbers are not
uniformly distributed; the rounding error is
smaller when the magnitude of the number is
smaller, as seen in Section 2.1). Trivially, if
E[α] = E[β] = 0 then E[w] = xy + z + xyE[αβ], and
E[αβ] ≠ 0 because rounding errors are neither
independent nor uncorrelated. Asymptotic theory
for dependent and correlated sequences is of little
help, because rounding errors routinely violate the
Lindberg condition: often a few rounding errors
dominate the final error.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 641

would exist as a function of software:
truncation error. It exists because a
program uses finite term approxima-
tions. The analysis of truncation error
can be said to constitute much of the
field of numerical analysis. Consider a
power series in x whose infinite sum is
sin(x). A computer will truncate the in-
finite sum by including only a finite
number of terms, and in doing so will
commit a truncation error. We note in
passing that some power series for
sin(x) converge quickly while others do
not, thus the choice of algorithm can be
crucial. Also, the rate of convergence
can depend upon x, converging faster
for some values than for others. Indeed,
even the order in which summation is
undertaken can affect the quality of the
result. Germund Dahlquist and Ake
Bjorck (1974) showed that in calculat-
ing Σn = 1

10,000 n−2, reversing the order leads
to an error 650 times smaller than sum-
ming over increasing n (see also
Higham 1996, §4.2–4.5). This is because
rounding error accumulates more slowly
when small terms are added first. Sum-
ming a very large number of very small
quantities is not just an exercise for
testing software; numerical integration
plays an important role in econometrics.
Numerical integration becomes particu-
larly difficult when higher moments are
involved, because the numerical error
becomes more severe. See Vinod and
Shenton (1996) for a discussion.

Whether via truncation or roundoff,
error is introduced into most any result
of an arithmetic operation. As a general
rule, successive errors do not offset
each other; they accumulate, and this
cumulative error is an increasing func-
tion of the number of operations. Gen-
erally, the total error is of order Nε
where N is the number of operations. In
the special case that errors tend to be of
opposite sign, the cumulative effect of
such errors does not disappear, but pro-

duces a total error of order √N ε. We
note that there are multiple precision
arithmetic routines available, which can
carry out calculations to 500 digits, thus
effectively eliminating roundoff error
for many types of problems. However,
they are quite specialized and not
generally used by economists.

Two methods of solving the same
problem can differ dramatically in the
number of operations. Consider solving
n equations in n unknowns. We all know
how to solve such a problem using
Cramer’s Rule. It can be shown that the
number of multiplications and divisions
necessary to solve the system is
(n2 − 1)n! + n. The method of Gaussian
elimination requires only n

6(2n2 + 9n − 5)
such operations. For n = 5 Cramer’s
Rule requires 2885 multiplications
whereas Gaussian elimination requires
only 75. With noncancelling errors and
machine precision 2−22, the orders of
the approximations are 0.0006874 and
0.00001788, respectively. However, if
n = 10, Gaussian elimination requires
475 operations with error order
0.0001132 while Cramer’s rule requires
approximately 360 million operations
with error order 85.831. Clearly, sys-
tems of equations should be solved by
Gaussian elimination rather than Cra-
mer’s rule (though for econometric
work, other methods are preferred to
Gaussian elimination). Prima facie it is
intuitively desirable to employ methods
with fewer operations, not only for the
sake of speed but also for the sake of
accuracy. This is not always so—some-
times more operations are desired not
for sake of speed but for sake of accu-
racy, e.g., in the calculation of the sam-
ple variance (see subsection 2.5). More-
over, not only are some algorithms
preferable to others, at an even more
fundamental level, some methods of
performing calculations are preferable
to others.

642 Journal of Economic Literature, Vol. XXXVII (June 1999)

When a calculation produces a num-
ber that is too large, the result is over-
flow, and a number that is too small
produces underflow. To see overflow,
on a handheld calculator with eight
digits and without scientific notation,
square 99,999,999. Dividing unity by
99,999,999 yields underflow. Overflow
is a very stark process, usually resulting
in noticeable program failure. Under-
flow can be pernicious, because when
handled improperly it can result in sen-
sible-looking answers that are com-
pletely inaccurate. One method of han-
dling underflow is known as abrupt
underflow (a.u.), in which numbers that
are sufficiently small but nonzero often
are automatically set to zero. One un-
fortunate consequence of abrupt under-
flow is that x – y = 0 does not imply
x = y (David Goldberg 1991), and logi-
cal tests for equality cannot be trusted.
To see how this can happen, it is easiest
to use decimal arithmetic rather than
base-2.

Suppose, then, that the base is 10,
the mantissa has three digits, and the
exponent ranges from –16 to +15, so
that the smallest representable floating
point number, say fpmin, is 1.00 × 10−16.
Consider two numbers, x = 5 .28 × 10−15

and y = 5 .23 × 10−15, both greater than
fpmin by a factor of 10. A test of x = y
will return false. Paradoxically, a test of
x – y = 0 will return true. The reason
for this is that x − y = 0 .06 × 10−15 =
6.0 × 10−17 when normalized, which is
smaller than fpmin and hence is set flush
to zero, i.e., subjected to abrupt under-
flow (a.u.). In the presence of a.u., no
theorems requiring x – y = 0 ⇐⇒ x =
y can be used to prove anything, since
this relation is then only sometimes
true, not always true.

As a means of handling the inaccu-
racy of a.u., I. Goldberg (1967) pro-
posed the method of gradual underflow
(g.u.). Continuing the above example,

when the exponent is at its minimum,
–16, fpmin no longer is the smallest rep-
resentable number, because 0.99 × 10−16

is smaller than fpmin. Note, however,
that 0.99 × 10−16 is not normalized, so
such floating point numbers are re-
ferred to as subnormals. Subnormal
numbers are part of IEEE-754 (IEEE
1985), the rules for computer arithme-
tic on which hardware has stan-
dardized.7 Virtually all PC and worksta-
tion hardware supports the use of
subnormal numbers, though some soft-
ware does not take advantage of this
feature. Prior to Demmel (1981), it was
commonly thought that a.u. is “harm-
less” and that the choice of either a.u.
or g.u. was innocuous. One of the ad-
vantages of IEEE-754 is that it sup-
ports g.u., which is a necessary condi-
tion for x – y = 0⇐⇒ x = y. Perhaps more
importantly, g.u. achieves greater nu-
merical reliability for solving linear
systems of equations than a.u. does.

To see this, consider the LU decom-
position of a matrix (another way to
solve for the least squares coefficients),
which produces a lower triangular (L)
and upper triangular (U) factorization
of a matrix A. Recall from matrix theory
that if A is non-singular then the main
diagonals of both L and U are non-zero.
Demmel (1981) gives the following
example. Let

A = λ 


2
1

3
2



 (2)

which is clearly well-conditioned for
matrix inversion. Using g.u. produces

7 As of this writing, some conforming computers
are: PCs based on Intel 386, 387, 486, Pentium,
and P6 processors and associated clones by Cyrix,
IBM, AMD, and TI; Macintosh based on Motorola
68020 + 68881/2 or 68040; IBM RS/6000; Power-
PC based PCs and Macintoshes; Suns based on M
68020 + 68881/2 or SPARC chips; DEC Alpha
based on DEC 21064 and 21164 chips; Cray T3D
based on DEC 21064; and HP based on PA-RISC
chips. Exceptions are: Cray X-MP, Y-MP, C90,
J90; IBM /370 and 3090; and DEC VAX.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 643

LguUgu =




1
1 ⁄ 2

0
1




 ⋅ λ ⋅





2
0

3

1 ⁄ 2



 = A (3)

whereas a.u. yields

LauUau =




1
1 ⁄ 2

0
1




 ⋅ λ ⋅ 



2
0

3
0




 ≠ A (4)

Thus, g.u. produces the correct factoriza-
tion while a.u. incorrectly attributes sin-
gularity to the decidedly non-singular
matrix A. It is known that a computer
that does not support g.u. cannot satisfy
some of the LAPACK (Linear Algebra
PACKage) benchmarks. To the extent
that nonlinear solvers are based on linear
approximations, it can be expected that,
ceteris paribus, g.u. is also better than
a.u. for solving nonlinear equations.

Though many chips fully support
IEEE-754 and many compilers and lan-
guages support some aspects of IEEE-
754, no compiler (as of this writing)
fully supports IEEE-754, nor does any
language (though FORTRAN 90 is
more 754–compliant than FORTRAN
77, and similarly for FORTRAN 95 with
respect to FORTRAN 90).8 Nonethe-
less, there are many languages and com-
pilers that support g.u., while there are
many that do not. Further results on
underflow and numerical reliability, in
addition to more examples, can be
found in Demmel (1984).

2.3 Misconceptions of Floating-Point
 Arithmetic

Having discussed some of the intrica-
cies of computer arithmetic and floating
point calculations, it is instructive to
dispel what Higham (1996) calls “Mis-
conceptions of Floating Point Arithme-
tic,” of which we mention only three.
We mention these not only to illumi-

nate the discussion of floating-point
arithmetic, but to drive home the fun-
damental point that computer math is
not at all like pencil-and-paper math.9

Misconception Number One: A short compu-
tation that is free of cancellation error, over-
flow, and underflow must necessarily be
accurate.

Consider the following six lines of
code:

for i = 1:60
 x = x**0.5
end
for i = 1:60
 x = x**2
end

where x∗∗0.5 ≡ √x and x∗∗2 ≡ x2. Note
that this algorithm is free from cancella-
tion error, underflow, and overflow.
Calculated without error, this algorithm
will return x for any non-negative x
that is entered, i.e., this algorithm rep-
resents the function f(x) = x, x ≥ 0. How-
ever, as seen in the previous subsection,
computers necessarily calculate with er-
ror, and so there is reason not to be sur-
prised if the computed function, f̂(x), dif-
fers from the theoretical function f(x).
On Brand X programming software, this
algorithm actually computes not f(x) but

f̂1(x) =




0,
1,

0 ≤ x < 1,
x ≥ 1. (5)

On Brand Y programming software a dif-
ferent answer is obtained:

f̂2(x) =




0,
1,

x = 0,
x > 0. (6)

Observe that f̂1 and f̂2 are completely dif-
ferent functions. Inputting the numbers

8 IEEE-754 was developed by hardware special-
ists; programming language and compiler special-
ists were not involved. Some aspects of IEEE-754
therefore are particularly difficult for compilers
and languages to support, but much progress is
being made.

9 See, for example, George Forsythe’s (1970)
aptly titled article, “Pitfalls in Computation, or
Why a Math Book Isn’t Enough,” for an elemen-
tary discussion of why ideas which work in mathe-
matical theory often fail in computational practice.
A related article is L. Fox’s (1971) “How To Get
Meaningless Answers in Scientific Computation
(and What To Do About It).”

644 Journal of Economic Literature, Vol. XXXVII (June 1999)

0.0, 0.1, 0.2, . . . , 1.0, f̂1 returns 10
zeroes followed by unity, while f̂2 returns
a zero followed by 10 units. One might
be tempted to think that, surely, one or
both answers indicate “bad” software; in
fact such a conclusion would be unwar-
ranted. There is nothing wrong with the
software. The problem is simply that the
algorithm exhausts the computer’s preci-
sion and range. A user should always
have some idea of the software’s preci-
sion and range, and whether his combi-
nation of algorithm and data will exhaust
these limits.

As a trivial example, a user should not
attempt to manipulate ten-digit num-
bers on a program that uses single pre-
cision storage.10 At the other extreme, a
researcher with a hundred thousand
observations might choose not to run a
regression on a PC. With so many
observations, the potential for disas-
trous cumulated rounding error is an
evident concern. Least squares algo-
rithms that are generally robust tend to
be memory-intensive, and a PC might
not have enough memory to solve a
large system with such an algorithm. A
less-robust least squares algorithm with
less-demanding memory requirements
might be able to produce a solution,
but the solution might well be so con-
taminated with rounding error as to be
completely unreliable.11

Misconception Number Two: Increasing the
precision at which a computation is per-
formed increases the accuracy of the answer.

Equation (1) shows that the bound on
the error is proportional to machine ep-
silon. When the error bound is attained,

if the same problem is solved in single
precision and then again in double pre-
cision, the double precision error bound
will be smaller than the single preci-
sion error bound by a factor of
εD ⁄ εS = 2−53 ⁄ 2−24 ≈ 10−9, i.e., the double
precision answer will have approxi-
mately nine more decimal digits correct
than the single precision answer. How-
ever, actually attaining the error bound
is a low probability event, so there is no
guarantee that a result computed in t
digits of precision will be more accurate
than a result computed in s digits of
precision for t > s (Higham 1996,
§1.13).12 The “convenient fiction” that
increasing the precision necessarily in-
creases the accuracy is just that; nor is
it a pathological case that would never
happen in practice.

As an example that this is more than a
theoretical curiosum, Longley’s results
with an IBM 360 were more accurate in
single precision than in double preci-
sion (see Table 10 of Longley 1967, p.
837). Had Longley not worked out the
correct answer by hand, many persons
naturally would assume that the double
precision estimates were more accurate
than the single precision estimates.
When a user says that he encountered
roundoff error in single precision and
then switched to double precision to get
a better answer, a better interpretation
of what he really means is provided by
William Press et al. (1992, p. 882), “For
this particular algorithm, and my par-
ticular data, double precision seemed
able to restore my erroneous belief in
the ‘convenient fiction’.” All this is not

10 Some packages have “single precision storage”
with “double precision calculation.” The use of
“single precision storage” can have adverse effects
on accuracy. See McCullough (1999a).

11 This illustrates one of the many dilemmas
confronting developers: how to balance the choice
of algorithm against the need to handle large
datasets. Further discussion of the developer’s
viewpoint can be found in Charles Renfro (1997).

12 J. H. Wilkinson (1963, pp. 25–26) describes
the circumstances under which the bound is at-
tained for floating-point multiplication. Not only
must each individual error attain its maximum, but
the distribution of the multiplicands must follow a
special law. Taken together, these imply that at-
taining the bound is a low probability event. See
also William Kennedy and James Gentle (1980,
pp. 32–33).

 McCullough and Vinod: The Numerical Reliability of Econometric Software 645

to suggest that double precision should
be abandoned in favor of single preci-
sion; far from it. The point is simply
that, contrary to what intuition based on
pencil-and-paper experience might tell
us, double precision is not always more
accurate than single precision.

Misconception Number Three: The final com-
puted answer from an algorithm cannot be
more accurate than any of the intermediate
quantities; that is, errors cannot cancel.

Earlier we suggested that rounding
errors do not cancel. However, that is a
general principle, and a clever program-
mer can force exception to the rule.
We now demonstrate this notion.
Consider f(x)=(ex − 1) ⁄ x. The seemingly
natural way to program this function is
Algorithm 1:

if x = 0
 f = 1
else
 f = (e**x - 1)/x
end

but an alternative is Algorithm 2:
y = e**x
if y = 1
 f = 1
else
 f = (y-1) / ln(y)
end

If x = 9 × 10−8 and final precision
u ≈ 6 × 10−8, then a precisely calculated
solution is f(x) = 1.00000005. Algorithm
1, the natural way to program the func-
tion, yields 1.32454766 while Algorithm
2 yields 1.00000006. The reason the
natural method fails miserably is because
the intermediate step of the calculation
is imprecise: for x ≈ 0 the numerator is
swamped by rounding and cancellation
error. Again let a circumflex (^) denote a
computed quantity. In Algorithm 2 it is
true that the intermediate quantities
ŷ − 1 and ln ŷ do not approximate y – 1
and ln y for y ≈ 1. Nonetheless,

(ŷ − 1) ⁄ ln ŷ is an extremely good approxi-
mation to (y − 1) ⁄ ln y in that range, be-
cause the latter varies slowly and in fact
has a removable singularity at the point
y = 1. This demonstrates that the “natu-
ral” way to program an equation may not
be the computationally accurate way.
Users and developers need to be cogni-
zant of this important point. As an exam-
ple of this phenomenon, not infrequently
a nonlinear solver will fail for one para-
meterization of an equation, but will pro-
duce a solution for another equivalent
parameterization.

Again it is seen that computer arith-
metic, when performed properly, may
not be at all like paper-and-pencil arith-
metic. Neither are mistakes computers
make like the ones humans make. With
paper and pencil, the order in which
several numbers are added makes no
difference to the final sum; not so with
computers. In our arithmetic, if x – y = 0
then x = y, but not in computer algebra
unless the computer supports grad-
ual underflow. Two formulae that are
equivalent in our algebra are not neces-
sarily equivalent when programmed
into a computer. Such differences as
these mean that our everyday notions of
arithmetic errors do not coincide with
the arithmetic errors made by comput-
ers. Even when the arithmetic is good
and the bounds on the truncations
and rounding errors are tiny, caution
still must be observed, for “small”
differences can matter appreciably.

2.4 “Small” Differences Matter

Recall the dictum from the days of
pencil-and-paper computation: if you
want one decimal of accuracy, carry
your calculations out to two decimals,
i.e., if you want n digits of accuracy
carry out the calculations to n + 1
digits. An example that illustrates the
falsity of this dictum is due to J. Van-
dergraft (1983), in which carrying

646 Journal of Economic Literature, Vol. XXXVII (June 1999)

�����������	
 ���
 ��
 ����

����	
 ���
���	
����

����	
 ��
 ���������
 ���	�
��
 ���
�����		���
�
=
α
+
β�
+
∈
�����
��
������
������
������
������
������
������
��
������
������
������
���� �
����!�
��� ��

"��
���#��
�$������	
���

�α�
+
����β�

����α�
+
������β�

=
 ����

=
 ������

�����
 ����
	
 �
 �����		���
 ����
 ��
�%
=
−��� !
+
���� ��
 &����	�
 ����
 ���
���#��
 �$������	��
 ��

 '���
 ��#����

����
��
����
	����������

����	
�	

�α�
+
����β�

����α�
+
�����β�

=
 ����

=
 �����

"��
��	������
�����		���
����
����

��(�
'���
 �%
=
−�����
+
��� ��
 ��������
 ���
������
 	����������

����
 ��
 ���
 ���#��
�$������	
 ������

 ���
 ���	�
 	����������

����
��
�
������������
��	������
��
��

��)
��	
��
��������
���
������
���
���������
��
���
 	�����
 "��
 ���
 �����		���
 ����	
 ���
$����

����������
 ����
 ��	�
 �����	�
 �
	����������
��
�
��

��
"��	
�*�#���
���)
����

�	���	
���
������
������
����
+�����)
#����
#���
�����	�
����
���

���
��
����)
���	
 ��
 �	
 ���
��		�,
 "�
 ���
 ���������
 �	
-������
 #�
�
 ������
 ��������
 �������)
����	
���
 ��
 	�����
��

��'��
�����	���
 �	
��
���������
��
�(��
�
	�����

����
��
��)
�������
 ��

 ���
 ������
 ��
 ���
 ������
��������#
#�����	�
����

"�
��
��	���

���
��	���	
���
'�
�
)
(��	���
 �������
�
 �������
 ����
 ����
���
�����
 ��

 ����������
 ������
 ��
 ��#'���

��
 ��
 ��	��'��
 #����

 .�����
 �������

�(�	���
 ��
 �
 �����
 ��#'��
 '�
 �
 	#���
��#'��/
 ���
 ��������
 �����
 ���
 ��#)
'���

�����
�(������#	
���
��	����
���)
	�
��
 ���
 	�	��#
 ��
 �$������	
 ��
 =
 �
�����
 ���
 #����*
 �
 ��

 (�����
 �
 ���
0����
 ��

 ���
 (�����
 �
 �	
 ��
 '�
 �����)
����
�
 1��#
 '�	��
 �����#�����	
 ��

0���
����
�
=
(�′�)−��′��
 2�
�
 �	
������

�
 ������
 ��

 �
 ������	
 �
 ������
 ����
 ���

���
���
����	
��
������
3
��
�
������	
�
���
 ����
 ���

���
 ���
 ���	
��
������
�
 2�
���
�������
 ���	�)	$����	�
 ��
���

���
#�)
���*
 �
 ���	�	�	
 ��
 ���������

����
 ����
�
 #����
 '�
 ��
 ���)���
������

 #����*
��

 	�������
 ����

 '�
 ���'��#�����
 4
#����

 ��
 �'�������
 �
 ����
 ���0	
 ���
����)���
������

���
#����
���
���0
��
���
 ���
 ���)���
������

����
 "��
 ������
��
 ���
�����
 �	
 ���
 ��#���

 5�	�
 ��

���3
������
���		�	
��
���'��#	
���
'�
	��

��
'�
 ���)���
������
�
 	���
 �	
 1��
���#
�$������	
��
���
���	�
0��
�

4	
 �������

�#��	�������
 ����
 	#���

���������	
 #������
 6������
 7�'���
 ��

6�����
 .�8 �/
 ������'�

 ���
 ��
����)

���
 (����'��	
 ��
 -������9	

���
 '�
�

���
�
���
�#
��#'��
������#��

�)
���'���

��
:)����
���88;
��
���
��	�
��')
��	��

�����
 1��
 �*�#����
 �8�
 <=>

�������
 �	
 �������

 �	
 !��
 '��
 ��
 #����
����
 ��(�
 '���
 ��������
 '������
 !���
��

 !���88�
"���
 �
 �����		���
��	
 ����
"��	
 �����
���
 ��	
 �������

 ����
��#�	�
 &����
 ���
������'�����
��
 ���
 ��)

����
���
 (����'��	
 �	
 ������
 ����
���
���������
��
 ���

����
 ���
#����
 �*����
������
 ������
 ��
 ���
 �	��#���

 ������)
�����	�
 ?���(���
 ���
 -������

���
 ���
���)���
������

��

	�
�
	#���
������
��
�
 ���
 ���
���
 �
 �����
 ������
 ��
 ��
 2�
���
����
 �����		���	�
 ���
�����������
��
���
 <=>

�������
 �		�#�

 (����	
 ���#
@�����
 ��
�� ���
"��
 ���)���
������

��)
����
 ��
 ���
 -������

���
 �	
 ��������
 ��
"�'��
��
�����
���	���	
-������9	
����)
�������	
 ��

 	����	���	
 ���
 ���
 ������)
�����	
���#
����
������'�

�����		���	�
A��
#����
 ����0
 ����
 ���
#���	
 ��
 ���
�����������	
 ���#
 ���	�
 ����
 ������'�

�����		���	
����

'�
����
-������9	
��)
������'�

 	��������
 '��
 	���
 �	
 ���
 ���
��	��
 &��
 B���

 .�8!�/
 ���
 �

�	��		���
��
 ���
 ��#������
 ��

 	����	�����
 �		��	
��(��(�
�
 4	
 #���
 �	
 ��
 ���������	
 ���
���

 ���
 ��������

����
 ���	
 �*����#���

��
A�
 ����	��
 ��
 ���
 	����

 �	�
 ���
 ���#��
�$������	
 ��
 	��(�
 ���
 �����		���
 �����������	�
C����
 ���
 ���#��
 �$������	
 ���0
 ����'���������
��#������������
����
���
�

�	�	����

��
�����������
�����
�� ����������
�������������������
��������
� �������� � ���

also underscores the idea that small dif-
ferences can matter appreciably and the
need for accurate algorithms.

2.5 Algorithms Matter

When solving y = Xb we know that
b = (X′X)−1X′y. This is what the least
squares result looks like, but is not how
it should be computed. The person un-
familiar with numerical methods should
be forgiven for concluding that the way
to calculate the least-squares coefficient
vector b is to calculate (X′X)−1 and then
post-multiply it by X′y (multiplying
(X′X)−1 by an estimate of the error vari-
ance yields cov(b)). However, direct so-
lution of the normal equations is very
susceptible to roundoff error and hence
extremely undesirable. Vinod (1997, p.
218) criticizes the “estimating function”
literature for ignoring the numerical in-
stability associated with direct solution
of the normal equations. Numerically, a
better way is first to calculate b without
inverting X′X, and then use b to calcu-
late (X′X)−1 and cov(b). Wampler (1980)
discusses various methods.

One such method of finding b with-
out inverting X′X is the LU decomposi-
tion (Press et al. 1994, §2.10), which
will work on a well-conditioned matrix,
but is prone to failure if the data are
collinear. For a near-singular matrix,
the singular value decomposition (SVD,
Press et al. 1994, §2.6) will work,
though it is slower (requires more op-

erations) than the LU decomposition.
In regression analysis, the SVD is the
method of choice (Sven Hammarling
1985; Press et al. 1992). Vinod and Ul-
lah (1981, p. 5) is one of the few econo-
metrics books that recommends the
SVD estimate of the regression prob-
lem. The SVD should be used until one
has proved that a faster algorithm will
be adequate or necessary.14 If it cannot
be shown that the data will always be
well-conditioned, they must be pre-
sumed to be ill-conditioned. To assume
otherwise lulls the user into a false
sense of trust and then, at some random
time, he is unknowingly betrayed. Sur-
prisingly, few packages mention what
algorithm is used to calculate b and
cov(b), and clearly a poor choice of ma-
trix inversion method can lead to disas-
ter, as was made clear by Longley. As a
general rule in computing, the method
of solution greatly affects the accuracy
of the solution, and properly imple-
menting a well-chosen algorithm is im-
portant. While describing how different
methods of calculating b and cov(b) can
lead to different answers is beyond the
scope of this paper, the basic ideas can
be illuminated by demonstrating how

TABLE 3
LONGLEY RESULTS AND SUMMARY STATISTICS ON 1000 PERTURBED REGRESSIONS

coefficient β0 β1 β2 β3 β4 β5 β6

Longley –3482258.63 +15.06 –0.04 –2.02 –1.03 –0.05 +1829.2
Beaton, et al.

mean –1152648.37 –26.44 +0.03 –0.96 –0.72 –0.28 +637.1
minimum –3483280.69 –232.3 –0.09 –2.42 –1.33 –0.94 –1706.9
maximum +3452563.48 +237.0 +0.20 +1.77 +0.36 +0.48 +1800.9

Source: Beaton, Rubin, and Barone (1976).

14 We have the luxury of concerning ourselves
solely with accuracy. As a practical matter, it
should be noted that the SVD is both memory-
and time-intensive. A developer cannot be faulted
for implementing the QR decomposition in its
stead. We admit to preferring the QR to the SVD
when bootstrapping.

648 Journal of Economic Literature, Vol. XXXVII (June 1999)

different methods of calculating the
variance of a series can lead to different
answers.

Robert Ling (1974) considered five
methods for calculating the variance, of
which we present three. The least pre-
cise he showed to be the “calculator”
formula (since it requires fewer key-
strokes, it often is suggested as an
alternative formula for calculation):

V1 =
Σx2 − (1 ⁄ n)(Σx)2

n − 1 (7)
while the standard formula

V2 =
Σ(x − x–)2

n − 1 (8)
is more precise because V1 squares the
observations themselves rather than
their deviations from the mean, and in
doing so loses more of the smaller bits
than V2. Specifically, V1 is much more
prone to cancellation error than V2. Yet
a third, less familiar, formula is the
“corrected two-pass method”:

V3 =
1

n − 1




∑ (xi

i = 1

n

 − x–)2




 −

1
n




∑ (xi

i = 1

n
 − x–)





2



 (9)

which is designed to account for round-
ing error. Algebraically, the right-most
term equals zero, but computationally it
will not. Again, pencil-and-paper arith-
metic is not like computer arithmetic. If
calculation of the mean is exact (with no
rounding error) then the second term on
the right-hand side equals zero and V3

collapses to V2. In the presence of
rounding error, V3 is likely to be more
accurate than V2.

Sometimes a developer claims to use
one formula when he actually uses an-
other, or does not specify a formula at
all. How might the quality of the vari-
ance-calculating algorithm be assessed?
Calculate the sample variance of three

observations: 90000001, 90000002, and
90000003 (obviously the correct answer
is 1.0). L. Wilkinson and Gerard Dallal
(1977) used this test on a variety of
mainframe packages and found that all
but one failed to produce the correct
answer. Many econometric packages fail
this test. A disingenuous counter-argu-
ment is that the data can always be re-
scaled to take better advantage of the
floating point representation. The ap-
propriate rejoinder is: “How do you
know that you need to rescale in the
first place?” Our practical advice is:
Test the software.

This, though, is the usual state of af-
fairs in using econometric software:
performing usual operations on an
econometric package usually will give
no indication that anything is wrong un-
less the package produces a glaring er-
ror such as a negative variance or R2 > 1.
For example, when computing correla-
tion matrices, users of package “X2” or
“X3,” absent prior benchmarking, would
have no inkling that their program was
faulty; a user of package “X4,” since the
correlations were greater than unity,
might suspect something. Interestingly,
each of the four packages passes the
Longley Benchmark—that a program
does one thing correctly is no assurance
that it does another thing correctly.

The above discussion may convey the
impression that computer arithmetic is
hopelessly imprecise, but nothing could
be farther from the truth. Indeed, rules
for computer arithmetic, if rigorously
implemented, can lead to theorems and
proofs of accuracy. The problem is not
that the computer is inaccurate; it is
how the inaccuracy is handled. If the in-
accuracy is handled properly, then theo-
rems can be proved which define an
arithmetic for floating point computa-
tions and so assure the final accuracy of
an answer. See David Goldberg (1991)
for an extended layman’s discussion and

 McCullough and Vinod: The Numerical Reliability of Econometric Software 649

examples of such theorems. Additional
useful references for computer arith-
metic are Kennedy and Gentle (1980,
ch. 3) and Ronald Thisted (1988, ch. 2).
More generally, for the economist
interested in matters computational,
we highly recommend Kenneth Judd’s
(1998) recent textbook Numerical
Methods in Economics.

3. General Benchmarks

Given the history of benchmarking
statistical software, simply trusting the
software represents the triumph of
hope over experience and is an invita-
tion to disaster. This, then, is the entire
purpose of benchmarking: with given
inputs and correct outputs in hand, the
program is supplied with the input and
its output is checked against the correct
answer. Exact accuracy is not de-
manded, but the program’s answer
should be close enough to the correct
answer. This develops a knowledge of
where the program errs and whether
the error is likely to affect results. First
examine the program’s general proce-
dures. After determining that they are
reliable, then examine specific econo-
metric procedures based on the general
procedures. For example, first deter-
mine that the linear least squares rou-
tine “works.” Then check that a special-
ized procedure based on linear least
squares, e.g., calculation of autocor-
relation coefficients, is implemented
properly.

Following Sawitzki (1994), we recom-
mend the use of the Wilkinson Tests for
entry-level purposes. Beyond that, in
Section One we mentioned several
benchmarks for least squares proce-
dures, such as univariate summary sta-
tistics, analysis of variance, and linear
regression. An obvious gap in the litera-
ture has been benchmarks for nonlinear
least squares procedures. This defi-

ciency was remedied by the Information
Technology Laboratory of the Statistical
and Engineering Division at the Na-
tional Institute for Standards and Tech-
nology (NIST), which recently released
its “Statistical Reference Datasets”
(StRD), a collection of benchmarks for
statistical software.15 While NIST has
plans to expand the number of bench-
marks, at this writing it contains 58
benchmarks in four suites: univariate
summary statistics (9 benchmarks),
analysis of variance (11), linear re-
gression (11), and nonlinear regression
(27).

To circumvent rounding error prob-
lems, NIST used multiple precision cal-
culations, carrying 500 digits for linear
procedures and using quadruple preci-
sion for nonlinear procedures. Com-
plete computational details and a dis-
cussion of test problem selection are in
Janet Rogers et al. (1998). The results,
rounded to fifteen digits for linear pro-
cedures and eleven digits for nonlinear
procedures, are referred to as “certified
values.” Certified values are provided
for a number of statistics for each suite.
For example, for univariate summary
statistics the mean, standard deviation,
and first-order autocorrelation coeffi-
cient are given to fifteen places. While
the output from so many tests is volumi-
nous, McCullough (1998) described
how to condense the output, and ap-
plied the benchmarks to three popular
statistical packages (McCullough 1999).
While the Longley lesson has been
learned—all packages did well on linear
regression benchmarks—gross errors
were uncovered in analyses of variance
routines (including negative sums of
squares), and some programs produced
solutions to nonlinear problems that
had zero digits of accuracy. One of the

15 On the web at http://www.nist.gov/itl/div898/
strd

650 Journal of Economic Literature, Vol. XXXVII (June 1999)

statistical packages solved all 27 of the
StRD nonlinear benchmarks, and an-
other solved 26 of 27, returning one in-
correct answer. Of course, there are
two ways a nonlinear procedure can fail,
as described by W. Murray (1972, p.
107): “The first is miserable failure
which is discovered when an exasper-
ated computer finally prints out a mes-
sage of defeat. The second is disastrous
failure when the computer and trusting
user mistakenly think they have found
the answer.”

McCullough (1999a) also applied the
StRD to econometric software. Again,
the Longley lesson has been learned,
but the problems with nonlinear estima-
tion appear to be more severe with
econometric software than with statisti-
cal software. At one extreme, one
econometric package correctly solved
26 of the 27 nonlinear estimation prob-
lems, once producing a miserable solu-
tion (of course, no solution is better
than an incorrect solution). At the other
extreme, a popular econometric pack-
age correctly solved nine, failed miser-
ably four times, and for the remaining
fourteen produced disastrous solutions.
Absent a benchmark, a user would have
no idea that this package produced
completely inaccurate “solutions” for
over 50 percent of the test problems. A
third package produced eight disastrous
solutions. Thus, the results of any study
involving nonlinear estimation that used
the latter two packages must be called
into question. It is not too far off the
mark to suggest, at least for econo-
metric packages, that nonlinear estima-
tion is today where linear estimation
was thirty years ago. As an aside, we
strongly caution any economist who
uses a spreadsheet package for econo-
metric estimation to benchmark the
package first (McCullough and Wilson
1999).

Also related to nonlinear estimation,

we note that some packages report no
details of their nonlinear estimation
(not even the method), and others are
vague about important details such as
whether numerical or analytic deriva-
tives are used.16 Still others make no
mention of how the standard errors are
computed, (e.g., via the gradient or in-
verse of the Hessian) despite the fact
that this can affect inference. Some
packages conflate the minimization and
nonlinear least squares routines, offer-
ing only a single procedure. The basis
for this is that any minimization prob-
lem can be written as a maximization
problem merely by appending a minus
sign to the objective function. Typically,
though, separate routines are used for
minimization of a sum of squares and
maximization of likelihood functions.
The primary reason is that the objective
function of a least squares problem has
a special form, and more efficient, spe-
cialized algorithms have been devised
for the special form. Some packages
offer only one solver, though neither
modified Gauss-Newton nor Levenberg-
Marquardt is sufficiently dependable
to serve as the sole general nonlinear
least squares method in supporting
software systems (Kennedy and Gentle
1980, p. 484).

All these problems are compounded
by the fact that virtually all journals do
not require authors to reveal computa-
tional details, not even the software
used. Thus, even if we know that some
software package is defective, we have
no idea which published results are
based on defective software and might

16 Generally speaking, analytic derivatives are
more accurate than numerical derivatives. Nu-
merical derivatives crafted for a particular prob-
lem can be as accurate as analytic derivatives, but
in a general purpose nonlinear solver, analytic
derivatives are preferred (Jonathan Bard 1974,
p. 117; J. E. Dennis and Robert Schnabel 1996,
p. 106). See Janet Donaldson and Schnabel (1987)
for Monte Carlo evidence.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 651

well be wrong. More to the point, nor
do we have any idea which results might
be right. Even in rare instances when a
software package is identified in an arti-
cle, and the package is later discovered
to be defective in a way which affects
the article’s results, updating the results
with a reliable software package is prob-
lematic. The reason is that virtually no
journals require authors to archive
either their data or their code, and this
constitutes an almost insurmountable
barrier to replication in the economic
science. Scientific content is not depen-
dent merely on writing up a summary of
results. Just as important is showing the
precise method by which the results
were obtained and making this method
available for public scrutiny. To our
knowledge, only the journal Macro-
economic Dynamics (MD) requires both
data and code, while the Journal of Ap-
plied Econometrics (JAE) requires data
and encourages code, and the Journal
of Business and Economic Statistics
(JBES) and The Economic Journal re-
quire data; all four journals have ar-
chives which can be accessed via the
worldwide web. In the context of repli-
cability and the advancement of sci-
ence, the advantage of requiring code
in addition to data is obvious. While it
may be trivial to use the archived code
to replicate the results in a published
article, only if the code is available for
inspection will other researchers have
the opportunity to find errors in the
code. Just as commercial software needs
to be checked, so does the code which
underlies published results.

The StRD, while the foremost collec-
tion of benchmarks for econometric
purposes, is not the only one. We note
also the existence of suites of bench-
marks for matrices (including inversion,
multiplication, eigenvalue decomposi-
tion, etc.). Given the prevalence of spe-
cialized covariance matrices whose cal-

culation is not automated, and also the
increasing use of eigenvalue analysis for
dynamical systems, these could profit-
ably be applied to testing the matrix-
handling facilities of econometric pack-
ages. They also would be suitable for
testing matrix-based languages such as
GAUSS and Ox. The “Matrix Market” of
R. Boisvert et al. (1997) has over 500
matrices, each with its own web page,
though many of them are quite special-
ized and rarely encountered in econom-
ics. A more managable number, about
70, with more relevance to economics is
Higham’s (1991, 1995) “TESTMAT” col-
lection. We are unaware of any econo-
metric software review that assesses
the accuracy of matrix calculations. We
have applied some of Higham’s test
matrices to some econometric pack-
ages and found errors in inversion and
eigenvalue routines, which suggests the
need for such assessments.

Checking the basic estimation ma-
chinery is only the beginning. That the
linear or nonlinear solver “works” is no
assurance that it has been properly im-
plemented in specialized procedures
such as FIML and GARCH. Such spe-
cialized procedures need benchmarks,
of which there is a marked dearth.

4. The Need for Specific Benchmarks

Discrepancies abound between dif-
ferent software packages, and many of
us are familiar with getting two answers
to the same problem using two different
packages. Here we do not refer to mi-
nor differences due to rounding error,
hardware configuration, or operating
system, but major differences due to
some unknown reason, such as the dis-
crepancy between FIML results pre-
sented in our Table 1. All three sets of
answers cannot be right; and in fact
they are not: the correct answer is by
Calzolari and Panattoni (1988), who

652 Journal of Economic Literature, Vol. XXXVII (June 1999)

provided a benchmark for FIML, in-
cluding the asymptotic covariance
matrix thereof computed by various
methods. See Julian Silk (1996) for a
discussion.

An unfortunate consequence of two
different packages providing two differ-
ent answers to the same problem is
a lack of replicability in economic
research. In their important article,
William Dewald, Jerry Thursby and
Richard Anderson (1986) showed that
replicating economic research is a nearly
impossible task. Part of the replicability
problem is that, in addition to the data
and the code used to run a commer-
cial package, an aspiring replicator also
needs the same commercial package as
the original author. Yet, a researcher
should be able to expect that FIML es-
timates of Klein’s Model I are not de-
pendent on the package used. Clearly,
benchmarks, replication, and software
reliability are fundamentally related.

The advantage of writing software to
meet existing benchmarks is obvious.
Yet even when benchmarks exist, few
econometric software developers pro-
vide users with benchmarks results, or
even provide sufficient information on
the algorithm that a user can ascertain
whether or not the procedure is likely
to produce correct results. For example,
many packages have “autocorrelation” and
“partial autocorrelation” procedures which,
given an input series, produce the
lagged autocorrelations and lagged partial
autocorrelations. These are critical for
choosing the number of AR and MA
lags for Box-Jenkins modelling. Yet rarely
is the user told how these results are
calculated, and this is important infor-
mation, since some poor algorithms are
in widespread use. An example follows.

Let x0 be a series and let x1 and x2
be its first and second lags. Let ρ1 be
the first-order autocorrelation coeffi-
cient (the simple correlation between

x0 and x1) and let π2 be the second-
order partial autocorrelation coefficient
(the correlation between x0 and x2 after
the effect of x1 on x0 is removed). By
definition the first-order partial auto-
correlation coefficient is equal to the
first-order autocorrelation coefficient,
i.e., π1 ≡ ρ1. There are many ways to cal-
culate the autocorrelation and partial
autocorrelation coefficients, and some
are better than others. With respect to
calculation of partial autocorrelation co-
efficients, George Box and Gwilym
Jenkins (1976, p. 65) note that the re-
gression method is more accurate than
methods based on the Yule-Walker
equations (YWE). M. Priestley (1981,
pp. 350–52) lists four methods in de-
creasing order of accuracy: exact maxi-
mum likelihood, conditional maximum
likelihood (CML), approximate least
squares, and the YWE. In general, the
YWE are to be eschewed for economic
data (Dag Tjostheim and Jostein Paul-
sen 1983), yet they are frequently em-
ployed in econometric software and
often the only method mentioned in
time series and econometrics texts. It is
interesting to compare the YWE to
CML.

Define a series x0 = {1, 2, . . . 10}.
It is linear without errors, so ρ1 ≡ 1.
Once the effect of x1 is removed from
x0, there is nothing left to explain, so
π2 ≡ 0. These intuitive results can be
verified by calculation from first princi-
ples, e.g., elementary formulae for cor-
relation and partial correlation (Alan
Stuart and J. Ord, 1991, p. 1012). A
standard implementation of the YWE
yields ρ̂1 = 0 .70 and π̂2 = −0.153, while
CML yields ρ̂1 = 1.0 and π̂2 = 0. The ef-
fect of inaccurate estimation of partial
autocorrelation coefficients on ARMA
model identification needs no elabora-
tion. Accurate computation of partial
autocorrelation coefficients is discussed
in McCullough (1998a).

 McCullough and Vinod: The Numerical Reliability of Econometric Software 653

As another example of the need for
benchmarking specialized procedures,
consider the staggering number of pub-
lished papers using GARCH. It is well-
known that different packages produce
different answers to the same problem.
While until recently there was no
benchmark for GARCH, this problem
was all but solved by Gabrielle
Fiorentini, Calzolari and Panattoni
(1996, hereafter FCP). They provided
complete and usable closed-form ex-
pressions for the gradient and Hessian
of a univariate GARCH model (recall
that analytic derivatives are more accu-
rate than the numerical derivatives
commonly used in GARCH proce-
dures). They also provided FORTRAN
code for estimating such a model. Using
this code on a well-known GARCH
dataset constitutes a benchmark.

The JBES archive has the T = 1974
observations on the daily percentage
nominal returns for the Deutsche-
mark/British pound exchange rate from
Tim Bollerslev and Eric Ghysels (1996,
hereafter BG). The JAE archive has the
FCP FORTRAN program. McCullough
and Renfro (1999) used these data and
code to produce the FCP GARCH
benchmark and applied it to seven pack-
ages, “Y1” through “Y7.” The model is
yt = µ + ∈τ, where ∈τ

Ψt−1 ~ N(0, ht) and
ht = α0 + α1∈τ−1

2 + β1ht−1. (BG estimated a
different parameterization of this model;
their results are consistent with bench-
mark.) Since this model must be esti-
mated by nonlinear methods, starting
values for the coefficients and a method
for initializing the series ht and ∈τ

2 at
time t = 0 must be specified. FCP, BG
and many others have used the initiali-
zation h0 = ∈0

2 = SSR ⁄ T (SSR is the sum
of squared residuals).

Surprisingly, not all packages could
even begin to estimate this simple
GARCH model which has been much-
used in applied work. Package Y2 allows

the user to control neither the starting
values nor the initialization of h0 and
∈0

2. Packages Y1, Y4, and Y6 allow the
user to specify the starting values, but
offer no control over the initialization.
Packages Y3 and Y5, which use ana-
lytic rather numerical first derivatives,
achieved two or three digits of accuracy
for the coefficients (the accuracy of the
standard error estimates is another mat-
ter altogether). Whether this degree of
accuracy is suitable as input for an op-
tion pricing model is unknown. Only
one package, Y7, hit the benchmark to
several digits of accuracy, and did so for
both coefficients and standard errors.
This package uses analytic first and
second derivatives.

In all but two cases, it was necessary
to contact the developer to determine
at least one and sometimes all of the
following: the precise method of initial-
izing h0 and ∈0

2; the type of derivatives
used; and the method of calculating
standard errors (there are at least five
ways). That these matters are not ex-
plicitly addressed in the documentation
is a serious omission. That four of seven
GARCH procedures cannot accommo-
date a simple and popular GARCH
model suggests that some vendors take
an idiosyncratic approach to program-
ming. For these four packages, the user
has very little choice as to the condi-
tional likelihood to be maximized. Such
approaches to documentation and pro-
gramming are an impediment to good
research.

Some procedures are easy to bench-
mark, as (partial) autocorrelation coeffi-
cients and two-stage least squares.
These, however, are the exception.
Generally, devising a benchmark is an
arduous process, as the work of Calzo-
lari et al. and Fiorentini et al. attests.
J. Dongarra and G. Stewart (1984)
noted, while describing their pioneering
efforts to test only linear algebra

654 Journal of Economic Literature, Vol. XXXVII (June 1999)

routines, “In some cases, the test pro-
grams were harder to design than the
programs they tested.” The general
state of affairs is that there are no
benchmarks for most specialized econo-
metric procedures. Perusing the list of
commands for any econometric soft-
ware package yields many procedures
for which we were unable to find a
benchmark and for which we found dis-
crepancies between packages: linear es-
timation with AR(1) errors, estimation
of an ARMA model, Kalman filtering,
limited dependent variables models, SUR
estimation, three-stage least squares, and
so on. Absent benchmarks, we cannot be
sure that an econometric package gives
us reliable answers. Estimation, how-
ever, is not the only part of a package
whose reliability needs to be verified.

5. Testing the Random Number
Generator

Only a few years ago, the use of ran-
dom numbers in economics was the ar-
cane province of a few specialists. With
the recent explosion in computing
power and concomitant theoretical ad-
vances, this is no longer the case. Simu-
lation (Christian Gourierioux and Alain
Montfort 1996), bootstrapping (Vinod
1993), and Bayesian econometrics are
but three econometric methods which
make extensive use of the random num-
ber generator (RNG). The recent text
by Gentle (1998a) is a useful reference.
Good introductions to RNGs are
Stephen Park and Keith Miller (1988)
and Press et al. (1992, ch. 7), both of
which stress that an RNG should not be
treated by the user as a “black box”—
the user who chooses to remain unin-
formed of the properties of his RNG
does so at his own peril. Yet, we exam-
ined several econometric packages and
found that most gave no information
whatsoever about the RNG employed,

not even a citation to the article in
which the RNG was published. Econo-
metric software developers typically do
present the RNG as a black box.

As is well known, the random num-
bers produced by a computer are not
random, but pseudo-random, i.e., they
are produced deterministically, but (if
the RNG works well) appear to be ran-
dom. One popular RNG is the linear
congruential generator (LCG), which
for a large integer m produces a se-
quence of numbers I1, I2, I3, . . . between
0 and m − 1 via a recursion

Ij + 1 = aIj + c (mod m) (10)
based on an initial “seed” I0, which often
is supplied by the user. Eventually, the
sequence repeats itself with a period no
greater than m, and exactly equal to m if
the parameters a, c, and m are carefully
chosen. Typically, output is restricted to
the interval (0,1) by returning Ij + 1 ⁄ m.
This sequence should be uniformly dis-
tributed. For the LCG, though not for
all RNGs, the same sequence will be
produced with the same seed. This re-
producibility is a desirable feature for
debugging purposes. When debugging a
program, it is necessary to examine the
input which caused the bug, and if the
RNG is not reproducible, the input no
longer is available.

Ripley (1990) lists the desirable char-
acteristics of an RNG. In short, an RNG
should:

1. be reproducible from a simply
specified starting point;

2. have a very long period;
3. produce numbers that are a very

good approximation to a uniform
distribution;

4. produce numbers that are very
close to independent in a moderate
number of dimensions.

We already addressed the first point; we
address the remaining three in turn.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 655

Poor choices for the parameters of
any RNG can drastically impair its qual-
ity, causing the period to be unneces-
sarily short or even producing non-
uniform random numbers. For example,
the infamous RANDU (IBM 1968, p.
77) generator distributed with the IBM
360 mainframe computer had such poor
choices for the parameters that Donald
Knuth (1997, p. 188) called it “really
horrible.” RANDU failed even simple
tests of randomness. Complicating mat-
ters for users, RANDU was widely
imitated, and even recommended in
textbooks long after its faults were well-
known (Park and Miller 1988, p. 1198).
As another example, Sawitzki (1985) de-
scribes the RNG for IBM PC BASIC as
being not only decidedly non-uniform,
but having a period of only 216. “Short”
is a relative term, and periods which
were of acceptable length only a few
years ago might now be unacceptable,
given the recent surge in the demand
for random numbers. Knuth (1997, p.
195) suggests that the period should be
at least one thousand times larger than
the number of values used, i.e., if p is
the period and n is the number of calls
to the RNG, then p > 1000n. The rea-
son is that the discrepancy between an
RNG’s output over its entire period and
true randomness can be large, espe-
cially for linear-type generators, so at
most a fraction of the RNG’s output
should be used. Therefore, a p ≈ 231

generator should be used for no more
than 2.1 million calls. Yet a modest
double bootstrap (see McCullough and
Vinod 1998) with 1999 first stage and
250 second stage resamples requires
that the residual vector be resampled
half a million times, so that such an
RNG can support a sample size of no
more than four observations.

The situation is even more stark for
more computationally intensive applica-
tions such as Bayesian inference with

numerical integration, Monte Carlo
studies, and calculation of non-standard
test statistics. John Geweke and Mi-
chael Keane (1997) used one billion
random numbers to conduct Bayesian
inference via Gibbs sampling. The
Monte Carlo of the double bootstrap by
David Letson and McCullough (1998)
required 45 billion calls to the RNG.
MacKinnon (1996) used more than 100
billion to tabulate the distribution func-
tions of unit root and cointegration sta-
tistics. With such considerations in
mind, Geweke (1996) showed how to
set up an RNG with p = 2100. One expert
on random numbers has written (Pierre
L’Ecuyer 1992, p. 306) “No generator
should be used for any serious purpose
if its period (or, at least, a lower bound
on it) is unknown.” A researcher needs
to know about the RNG in his econo-
metric package. Simply having a cita-
tion for the RNG is insufficient, be-
cause faulty RNGs are still proposed in
journal articles (L’Ecuyer 1994), and
some RNGs with bad properties are in
widespread use.

Not only should an RNG have a long
period, it should also pass statistical
tests for randomness, because corre-
lated output can wreak havoc. For ex-
ample, first-order autocorrelation of the
random numbers might not be a prob-
lem if Monte Carlo methods are used to
evaluate a one-dimensional integral, but
almost certainly would be disastrous for
evaluating a two-dimensional integral.
The idea behind testing is to see
whether the RNG’s output is signifi-
cantly different from the behavior of a
truly independently and identically dis-
tributed sequence of uniform random
variables. Strictly speaking, the null hy-
pothesis that the output from an RNG
is uniform, i.i.d. is false, and no single
best test exists. Yet, since what is
wanted from an RNG is the appearance
of randomness, ceteris paribus, we

656 Journal of Economic Literature, Vol. XXXVII (June 1999)

recommend an RNG that passes a given
test for uniformity to one that fails it.
Moreover, one test is insufficient. Since
there are many possible departures
from randomness, many tests should be
applied.

The following simple example de-
scribes testing a sequence of numbers
for randomness, which often involves
two-level testing. Divide the unit inter-
val into 30 equal bins. Make three hun-
dred calls to the RNG and place each in
its appropriate bin. If the RNG does
provide truly uniform numbers, there
should be 10 numbers in each bin, plus
or minus random deviations. This can
easily be tested by using the χ2 compari-
son of the actual and expected number
in each bin. Repeat this test 10 times,
yielding 10 χ2 statistics which can then
be compared to a theoretical χ2 distrib-
ution with 29 degrees of freedom us-
ing the Kolmogorov-Smirnoff (K-S)
test. This will test whether the RNG
produces numbers that are approxi-
mately uniformly distributed. Of
course, the number of bins can be in-
creased, as well as the number of calls
to the RNG, to provide finer discrimi-
nation. The reason for running 10 χ2

tests and then using the K-S test (two
levels) instead of conducting one large
χ2 on 3000 random numbers (one level)
is that this increases the power of the
test (L’Ecuyer 1994, sec. 4.5.1), which
is desirable since the null hypothesis is
false.

The above procedure tests how well
the RNG can fill the real line, but can it
fill a square? To test this, make a
square with 30 equal intervals on each
side, for a total of 900 bins. Draw 9000
pairs of random numbers, which should
put 10 in each bin. Uniformity can be
tested by comparing actual and ex-
pected numbers for each bin with a
χ2(899) distribution. Then, the test can
be repeated 10 times and those 10 χ2

statistics subjected to a K-S test. Many
simple RNGs will pass the extension to
three dimensions; RANDU will not.
While RANDU’s output appeared ran-
dom in one and two dimensions, its
correlation showed up strongly in three
dimensions, i.e., RANDU’s output was
not uncorrelated in a moderate number
of dimensions. Extensions to still higher
dimensions are easily generalized. R.
Coveyou and R. MacPherson (1967)
first observed and George Marsaglia
(1968) explicitly discussed that LCGs
have a lattice structure. That is, in 3–
space, for example, the points (z1, z2, z3),
(z2, z3, z4) and (z3, z4, z5) all fall on a finite
number of planes. Therefore, the num-
ber of planes should be large and they
should be close together. Hence, it is
important to test for correlation in
higher dimensions, though for practical
reasons the number of dimensions is
limited to about eight.

Batteries of such tests are offered by
Michael Stephens (1986) and She
Tezuka (1995), though the first stan-
dard battery of tests of which we are
aware was given in the 1981 edition of
Knuth (1997), with FORTRAN and C
implementations by E. Dudewicz and
T. Ralley (1981) and Jerry Dwyer and
K. Williams (1996), respectively. Mar-
saglia (1985) noted that Knuth’s tests
were not very stringent. This is espe-
cially true today, as the scale of
computer simulations has increased
concomitantly with computing power.
In particular, some RNGs that pass the
Knuth tests frequently produce signifi-
cant biases when used in large-scale
simulations. To remedy this deficiency,
Marsaglia (1996) produced “Diehard: A
Battery of Tests of Randomness,” also
known as “Marsaglia’s Diehard Tests,”
for which automated executable files
for DOS and LINUX are available, as
well as source files in C. The executable
operates on a file of about three million

 McCullough and Vinod: The Numerical Reliability of Econometric Software 657

random numbers created by an RNG.
While three million random numbers will
accommodate only the smallest and sim-
plest of Monte Carlo studies, as a first
assessment of an RNG, DIEHARD has
ease of use to recommend it.17 For test-
ing more than three million, the source
files must be modified and recompiled.
Names and descriptions of the tests are
produced as part of the output. Mar-
saglia is planning a revision of DIE-
HARD. L’Ecuyer’s TESTU01 program
is in the testing stage, and is scheduled
to be released in the next year or so.

The developer of an RNG often will
subject the RNG to several tests and
note this in the article in which the
RNG is published. However, implemen-
tation of an RNG can be difficult, so it
is imperative that the developer’s im-
plementation be tested. Our own infor-
mal application of DIEHARD to a few
econometric packages found that while
some passed, some did not. Still, even
those that passed would be unsuitable
for large-scale applications. Impor-
tantly, not one package mentioned the
period of its RNG.

6. Statistical Distributions

Some persons might think that com-
puter programs are more accurate than
statistical tables, since the statistical
tables only report a few decimals and
computer programs report several, but
such is not necessarily the case. Imag-
ine an economist conducting a Chow
test with 3 restrictions on 126 observa-
tions. Suppose he calculated a test
statistic of 4.0. He might well have an
interest in the F(3,120) distribution. If
he uses Package “X4” to calculate the 1
percent critical value, he obtains 4.12.

Thus, he does not reject the null—until
a referee points out that a standard sta-
tistical table gives a critical value of
3.95, and so the null is rejected along
with the article. As another example,
the documentation for Package “X5”
says that its Student’s-t function returns
“the probability that a t-statistic with d
degrees of freedom exceeds X. Letting
X = 1.345 and choosing d = 14, a sta-
tistical table shows that the upper tail is
0.10. Yet Package “X5” returns 0.2000—
the value for a two-tail test. Erroneous
inference awaits the user who trusts such
documentation. Leo Knüsel (1995) has
documented the inaccuracy of statistical
distributions in GAUSS v3.2.6, and also
that these same inaccuracies were not
corrected in release v3.2.13 (Knüsel
1996). Even more serious inaccuracies were
revealed in the statistical distributions
of Excel97 (Knüsel 1998). McCullough
(1999b) used Knüsel’s (1989) ELV pro-
gram to document similar inaccuracies
in econometric packages.

Statistical distributions have two fun-
damental applications: calculating p-val-
ues and calculating critical values for
some level of significance. Let F(x) be
the cumulative distribution function
(cdf) of the random variable X whose
probability density function is f(x). The
first step in calculating a (one-sided)
p-value for a calculated statistic, x~, is to
determine p~ = P(X ≤ x~) = F(x~). Usually,
there is no closed-form expression avail-
able, and so the problem becomes one
of approximating an integral

F(x~) = ∫
−∞

x~

f(t)dt
(11)

The problem of finding a critical value
amounts to approximating the inverse of
the above integral, i.e., finding xc such
that

xc = F−1(1 − p) (12)

for some specified value of p.

17 The documentation for DIEHARD is sketchy.
Persons wishing to use DIEHARD should consult
McCullough (1998, 1999) for implementation
details.

658 Journal of Economic Literature, Vol. XXXVII (June 1999)

It is well-known that the cdf of the
standard normal distribution must be
evaluated numerically. Numerical evalua-
tion, or integral approximation, is rife
with technical difficulties. Improper in-
tegrals (with limits of −∞ or + ∞) must
be dealt with, and integrals with vertical
asymptotes and other such stumbling
blocks must be overcome. General ex-
positions on these details are available
in Kennedy and Gentle (1980, ch. 5)
and Thisted (1988, ch. 5), with discus-
sions of specific distributions in Nor-
man Johnson, Samuel Kotz, and N.
Balakrishnan (1994, 1995). Algorithmic
error is especially critical here. Barry
Brown and Lawrence Levy (1994) ex-
amined several algorithms for the in-
complete beta distribution (which is the
basis of the F-distribution, among oth-
ers) and found only one of them to be
reliable. B. Bablok (1988) uncovered
several errors in commonly used formu-
lae for non-central statistics. As an ex-
ample, a procedure for the non-central
F based on Eq. 26.6.18 of Milton Abra-
mowitz and Irene Stegun (1972) will
return incorrect results.

It is sometimes suggested that statis-
tical distributions need be accurate only
to two or three digits. There are two ob-
jections to this. First, a package that at
best gets two or three digits is more
likely to provide zero digits than a pack-
age that at best gets several digits. Sec-
ond, there are many applications for
which two or three digits are insuffi-
cient. Among these are Edgeworth ex-
pansions, Monte Carlo Markov chains,
size and power calculations, quantile-
quantile plots, censored and truncated
regressions, and many more. These
methods sometimes require accurate
evaluation of probabilities as small as
1.E-12 and smaller. Knüsel (1995) sug-
gested that the minimum requirement
for statistical distributions is that they
should be accurate to all displayed

digits, and observed that this has three
implications:

• If a probability is smaller than 0.5E-
4 and the program prints out
0.0000, then the program is correct.

• If a probability is zero and the pro-
gram prints 0.76543E-11, then the
program is incorrect.

• If a probability is 3.456E-10 and the
program prints 3.401E-10, this is
incorrect, for the result is not
correct as printed.

This last point is easiest to see when it
is remembered that relative error, and
not absolute error, is the relevant crite-
rion. While 3.401E-10 − 3.456E-10 =
-0.55E-10 is a small number, the rela-
tive error is (|3.401E-10 − 3.456E-10|)/
3.456E-10 ≈ 19%, which is not small.

In order to assess accuracy, accurate
results must be obtainable. Here,
Knüsel’s (1989) ELV, available as a
DOS executable, and Brown’s (1997)
DCDFLIB, available in FORTRAN77
and C tar files, can be of use. A basic
sequence of percentiles (BSP) {0.0001,
0.001, 0.01, 0.1, 0.2, . . . , 0.9, 0.99,
0.999, 0.9999 can be profitably em-
ployed. Probabilities outside this range
are referred to as the “extreme tails.”
Use ELV or DCDFLIB to generate
critical values for the BSP. Feed these
critical values into the econometric
package to see whether the correct tail
values are returned. If they are, then
the distribution seems accurate and the
extent of its accuracy can be assessed by
using ELV or DCDFLIB to answer the
following questions:

• How far can the degrees of freedom
be extended before the program
breaks?

• Are the results still sensible for ex-
treme parameters or is nonsense out-
put, such as negative probabilities,
produced?

 McCullough and Vinod: The Numerical Reliability of Econometric Software 659

• Does the program correctly calcu-
late very small probabilities? (This
amounts to checking the “extreme
tails” to determine the point at which
the package no longer produces
accurate answers.)

• Does the program give very small
results such as 0.76345E-37 that
are completely wrong?

To test inverse functions, feed the
BSP into the inverse function and see
whether the exact critical values are re-
turned. A common problem which can
be observed is that one tail is more ac-
curate than the other. This is because
many packages do not compute upper
and lower tails separately, but compute
only one tail and find the other by
complementation. When a probability
is near zero or unity, this can lead to
cancellation error if upper and lower
tails are not computed separately. Con-
sider determining p = P(X > 265) where
X is chi-square with 100 degrees of
freedom. Many packages, “Package X3”
included, will compute only P(X ≤ 265),
so p must be determined by comple-
mentation, p = 1 − P(X ≤ 265) which pro-
duces p = 0.11102E−15 rather than the
correct p = 7.2119E-17. The reason is
that P(X ≤ 265) is very close to unity,
and so the subtraction necessary to
obtain p is contaminated by cancella-
tion error to the point that the re-
sult has no accurate digits. Packages
should compute upper and lower tails
separately.

7. Conclusions and Recommendations

We have presented several cases of
serious numerical discrepancies be-
tween econometric packages, including
FIML, GARCH, (partial) autocorrela-
tion, and Cochrane-Orcutt corrections.
We have suggested that inadequate
nonlinear solvers are not uncommon.

There can be no doubt that many
more such discrepancies exist, and
they can be attributed in part to a lack
of benchmarks. We have also shown
that random number generators and
statistical distributions can suffer from
numerical problems. These problems
can be solved only by a concerted ef-
fort on the part of users, developers,
and the economics profession as a
whole.

Users should recognize that accuracy
is at least as important as either speed
or user-friendliness. This does not mean
each user must immediately visit the
StRD website and commence bench-
marking his package. At the very least it
does imply that users should be cogni-
zant of the fact that writing accurate
software is more demanding than writ-
ing either fast or friendly software. De-
velopers need to benchmark their soft-
ware. This does not mean developers
should suspend implementation of new
procedures and devote all their re-
sources to developing needed bench-
marks. At the very least, it means that
developers should make use of existing
benchmarks, such as StRD, TESTMAT,
and others which will be developed in
the future. When a benchmark exists
for a procedure, as in the case of FIML,
the developer should note in the man-
ual that the procedure achieves the
benchmark, or else explain why it does
not. Moreover, developers need to
document their procedures better. As
Lovell and Selover (1994) discovered in
their consideration of AR(1) proce-
dures, there are many admissible imple-
mentations of AR(1) procedures, and
developers often do not describe pre-
cisely which implementation they use.
Documentation for econometric soft-
ware can only be improved by paying
proper attention to numerical and algo-
rithmic matters. RNGs need to be docu-
mented, including the type of RNG, its

660 Journal of Economic Literature, Vol. XXXVII (June 1999)

period, and tests the developer’s imple-
mentation of the RNG has passed.
Statistical distributions also need to be
better documented, and to have their
accuracy verified.

Accurate econometric software is not
just the responsibility of the developers,
it requires active participation by the
profession. Obviously, creating bench-
marks is beyond the capability of any
one developer, or even the small collec-
tion of developers. So, too, is the matter
of deciding which procedures are most
in need of being benchmarked. A strong
suggestion that a method needs to be
benchmarked is that two packages give
two different answers to the same prob-
lem.18 At present, two different pack-
ages are not often used to solve the
same problem, but the widespread use
of archives by journals would change
this. Therefore, journal editors should
require that authors identify their soft-
ware (including version number) and
make their code and their data widely
available via archives. In addition to un-
covering discrepancies between pack-
ages, this will provide developers and
users more of an incentive to rely upon
benchmarked procedures, and thus at-
tenuate the problem of two packages
providing two different answers to the
same problem.

Why journal readers do not demand
archives is the same issue as why soft-
ware users do not demand evidence of
accuracy. Yet, just as results from a soft-
ware package that passes benchmark
tests are preferable to results from a
software package that fails benchmark
tests, so, too, studies from a journal
whose results are capable of being veri-
fied are preferable to studies from a
journal whose results are not verifiable.

Regrettably, neither benchmarking by
vendors nor archiving by journals is yet
a common practice.

Two related events are worth noting.
First, following the publication of De-
wald, Thursby, and Anderson (1986),
the Journal of Money, Credit and Bank-
ing began requesting data from its
authors, and the NSF established an
archive for the storage and distribution
of authors’ data at the University of
Michigan’s Interuniversity Consortium
for Political and Social Research. The
NSF economics program invited journal
editors to request that authors place
their data in this archive; 22 editors
declined this invitation (Anderson and
Dewald 1994). Second, in 1993, the
JMCB discontinued its practice of re-
questing data from authors. However,
both events occurred before the advent
of the worldwide web.

While some journals have “policies”
that authors should make available their
data and code, there is no penalty at-
tached to an author’s refusal to comply,
and these policies are honored more
often in the breach. The results of
Dewald, Thursby, and Anderson (1986),
recently revisited by Anderson and De-
wald (1994), showed that most authors
could not or would not honor a request
for data and code. The disincentives for
authors to comply with such requests
are discussed in Susan Feigenbaum and
David Levy (1993, 1994). An archive
completely eliminates the problem of
obtaining data and code from authors.
The MD archive, in fact, requires that
the code supplied be able to reproduce
the reported results. This latter require-
ment is necessary to ensure the replica-
bility of research, but it is also neces-
sary for the problem of determining
whether two packages really do produce
different answers to the same problem.
A reported discrepancy between two
packages might be due to a coding

18 This does necessarily mean that either pack-
age is incorrect. It may mean only that the docu-
mentation is poor and the two packages are really
doing two different things.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 661

error, but this cannot be determined if
the code is not available.

That the methods by which results
are obtained be open to the scrutiny of
other researchers is a higher standard
of quality than is usually found in
economics, but it is a common standard
in other sciences. Economic research
would generally benefit if this standard
was more widely adopted, and so would
software.19 We observe that some
authors maintain this higher standard
by making use of personal archives
when they publish in journals that
have no archive. To give but three
examples, the articles by Bronwyn Hall
(1993), James Hamilton (1997), and
Mark Watson (1993) all have data
and code archived at the authors’
homepages.

Until journal archives are common-
place, many things can be done. Re-
searchers should ensure that their soft-
ware is up to the task of producing
replicable research. Referees can ask
authors to provide computational details,
with reference to making sure that re-
sults are reproducible. Software review
editors can do at least two things. When
a developer provides no evidence that
his software meets existing benchmarks,
the editor can suggest that the reviewer
apply known benchmarks. Second, soft-
ware review editors can encourage
reviewers to propose new benchmarks.
The more quantitative journals can
devote space to publication of more so-
phisticated benchmarks or to discussion
of software; for example, the Journal of
Economic and Social Measurement has
a special issue on econometric software
forthcoming.

Reliable econometric software is the

joint responsibility of the users, devel-
opers, and the profession. We hope the
day is not too far off when the adver-
tisements for econometric software
read, “Obtains the correct solution in x
seconds,” rather than the current, “Ob-
tains a solution in y seconds,” and that
users will appreciate this distinction,
even though x may be greater than y.

REFERENCES

Abramowitz, Milton and Irene A. Stegun. 1972.
Handbook of Mathematical Functions. 9th
printing. NY: Dover.

Anderson, Richard G. and William G. Dewald.
1994. “Scientific Standards in Applied Econom-
ics a Decade After the Journal of Money, Credit
and Banking Project,” Fed. Res. Bank St. Louis
Rev., 76, pp. 79–83.

Bablok, B. 1988. Numerische Berechnung
nichtzentraler Statist.her verteilungen. Diploma
thesis, Dept. Statistics, U. Munich.

Bankhofer, Udo and Andreas Hilbert. 1997.
“Statistical Software for Windows: A Market
Survey,” Statist. Pap., 38, pp. 393–407.

Bard, Jonathan. 1974. Nonlinear Parameter
Estimation. NY: Academic Press.

Beaton, Albert E.; Donald B. Rubin, and John L.
Barone. 1976. “The Acceptability of Regression
Solutions: Another Look at Computational Ac-
curacy,” J. Amer. Statist. Assoc., 71:353, pp.
158–68.

Bernhard, G.; M. Herbold, and W. Meyers. 1988.
“Investigation on the Reliability of Some Ele-
mentary Nonparametric Methods in Statistical
Analysis Systems,” Statist. Software Newsletter,
14, pp. 19–26.

Berndt, Ernst. 1990. The Practice of Econo-
metrics. Reading, MA: Addison-Wesley.

Boisvert, R.; R. Pozo, K. Remington, R. Barrett,
and J. Dongarra. 1997. “Matrix Market: A
Web Resource for Test Matrix Collections,” in
The Quality of Numerical Software: Assessment
and Enhancement. Ronald Boisvert, ed.
London: Chapman and Hall, pp. 125–37.
(http://math.nist.gov/MatrixMarket)

Bollserlev, Tim and Eric Ghysels. 1996. “Periodic
Autoregressive Conditional Heteroscedasticity,”
J. Bus. Econ. Statist., 14:2, pp. 139–51.

Box, George E. P. and Gwilym Jenkins. 1976.
Time Series Analysis: Forecasting and Control.
San Francisco: Holden-Day.

Brown, Barry W. 1998. DCDFLIB v1.1 (Double
Precision Cumulative Distribution Function
LIBrary) (ftp://odin.mdacc.tmc.edu/pub/source).

Brown, Barry W. and Lawrence B. Levy. 1994.
“Certification of Algorithm 708: Significant
Digit Computation of the Incomplete Beta,”
ACM Transactions on Math. Software, 20:3, pp.
393–97.

19 The journals themselves might also benefit.
Tauchen (1993) has argued that readers of jour-
nals should be interested in data and code, and
that when they are made available a journal’s
prestige and circulation should increase.

662 Journal of Economic Literature, Vol. XXXVII (June 1999)

Campbell, John Y. and N. Gregory Mankiw. 1987.
“Are Output Fluctuations Transitory?” Quart. J.
Econ., 102, pp. 857–80.

Calzolari, Giorgio and Lorenzo Panattoni. 1988.
“Alternative Estimators of FIML Covariance
Matrix: A Monte Carlo Study,” Econometrica,
56:3, pp. 701–14.

Chaitin-Chatelin, Francoise and Valérie Frayssé.
1996. Lectures on Finite Precision Computa-
tions. Philadelphia: SIAM.

Coveyou, R. and R. MacPherson. 1967. “Fourier
Analysis of Uniform Random Number Gener-
ators,” J. ACM, 14:1, pp. 100–19.

Dahlquist, Germund and Ake Björck. 1974.
Numerical Methods. New York: Prentice-Hall.

Davidson, Russell and James G. MacKinnon. 1993.
Estimation and Inference in Econometrics. New
York: Oxford.

Demmel, James. 1981. “Effects of Underflow on
Solving Linear Systems,” manuscript, Computer
Science Div., U. C. Berkeley.

———. 1984. “Underflow and the Reliability of
Numerical Software,” SIAM J. Sci. Statist.
Computing, 5:4, pp. 887–919.

Dennis, J. E. and Robert B. Schnabel. 1996. Nu-
merical Methods for Unconstrained Optimiza-
tion. Philadelphia: SIAM Press.

Dewald, William G.; Jerry G. Thursby, and Rich-
ard G. Anderson. 1986. “Replication in Empiri-
cal Economics: The Journal of Money, Credit
and Banking Project,” Amer. Econ. Rev., 76:4,
pp. 587–603.

Dongarra, J. J. and G. W. Stewart. 1984. “LIN-
PACK––Package for Solving Linear Systems,”
in Sources and Development of Mathematical
Software. W. Cowell, ed. NY: Prentice-Hall, pp.
20–48.

Dudewicz, E. and T. Ralley. 1981. The Handbook
of Random Number Generation and Testing
with TESTRAND Computer Code. Columbus,
OH: American Sciences Press.

Dwyer, Jerry and K. B. Williams. 1996. “Testing
Random Number Generators,” C/C++ Users
J., June, pp. 39–48.

Eddy, W. F.; S. E. Howe, B. F. Ryan, R. F. Teitel,
and F. Young. 1991. The Future of Statistical
Software: Proceedings of a Forum. Wash., DC:
Nat. Academy Press.

Elliott, Alan C.; Joan S. Reisch, and Nancy P.
Campbell. 1989. “Benchmark Data Sets for
Evaluating Microcomputer Statistical Pro-
grams,” Collegiate Microcomputer, 7:4, pp.
289–99.

Feigenbaum, Susan and David M. Levy. 1993.
“The Market for (Ir)Reproducible Econo-
metrics,” Soc. Epistemology, 7:3, pp. 243–44.

———. 1994. “The Self-Enforcement Mechanism
in Science,” manuscript, presented at the AEA
meetings, Boston.

Fiorentini, Gabriele; Giorgio Calzolari, and
Lorenzo Panattoni. 1996. “Analytic Derivatives
and the Computation of GARCH Estimates,”
J. Appl. Econometrics, 11:4, pp. 399–417.

Ford, B. and J. Rice. 1994. “Rationale for the IFIP

Working Conference: The Quality of Numerical
Software: Assessment and Enhancement,”
IFIP–WG2.5 doc., Raleigh.

Forsythe, George E. 1970. “Pitfalls in Computa-
tion, or Why a Math Book Isn’t Enough,” Amer.
Math. Monthly, 77, pp. 931–56.

Fox, L. 1971. “How To Get Meaningless Answers
in Scientific Computation (and What To Do
about It),” IMA Bul., 7:10, pp. 296–302.

Francis, Ivor. 1981. Statistical Software: A
Comparative Review. NY: North-Holland.

———. 1983. “A Survey of Statistical Software,”
Computational Statist., 1:1, pp. 17–27.

Francis, Ivor; Richard M. Heiberger, and Paul F.
Velleman. 1975. “Criteria and Considerations in
the Evaluation of Statistical Software,” Amer.
Statistician, 29:1, pp. 52–56.

Gentle, James E. 1998. Numerical Linear Algebra
with Applications in Statistics. NY: Springer.

———. 1998a. Random Number Generation and
Monte Carlo Methods. NY: Springer.

Geweke, John. 1996. “Monte Carlo Simulation and
Numerical Integration,” in Handbook of
Computational Economics, vol. 1. Hans M.
Amman, David A. Kendrick, and John Rust,
eds. Amsterdam: North-Holland, pp. 731–800.

Geweke, John and Michael Keane. 1997. “An Em-
pirical Analysis of Income Dynamics Among
Men in the PSID,” Staff Rep. 233, Fed. Res.
Bank Minneapolis.

Goldberg, David. 1991. “What Every Computer
Scientist Should Know About Floating-Point
Arithmetic,” ACM Computing Surveys, 23:1,
pp. 5–48.

Goldberg, I. B. 1967. “27 Bits Are Not Enough for
8–Digit Accuracy,” Communications of the
ACM, 10:2, pp. 105–106.

Gourieroux, Christian and Alain Montfort. 1996.
Simulation Based Methods in Econometrics.
NY: Oxford U. Press.

Greene, William H. 1997. Econometric Analysis,
3e. NY: MacMillan.

Hall, Bronwyn. 1993. “The Stock Market’s Valu-
ation of Research and Development Investment
During the 1980s,” Amer. Econ. Rev., 83:2, pp.
259–64.

Hamilton, James D. 1997. “Measuring the Liquid-
ity Effect,” Amer. Econ. Rev., 87:1, pp. 80–97.

Hammarling, Sven. 1985. “The Singular Value De-
composition in Multivariate Statist.,” ACM Spe-
cial Interest Group on Numerical Math., 20, pp.
2–25.

Higham, Nicholas J. 1991. “Algorithm 694: A Col-
lection of Test Matrices in MATLAB,” ACM Trans-
actions on Math. Software, 17:3, pp. 289–305.

———. 1995. “The Test Matrix Toolbox for MAT-
LAB v3.0,” Numerical Analysis Rep. 276, U.
Manchester, England. (http://www.ma.man.ac.uk/
~higham/testmat.html).

———. 1996. Accuracy and Stability of Numerical
Algorithms. Philadelphia: SIAM.

IBM. 1968. System/360 Scientific Subroutine
Package, Version III, Programmer’s Manual.
White Plains, NY.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 663

IEEE. 1985. Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754–1985. NY:
Inst. Electrical and Electronics Engineers. Re-
printed in SIGPLAN Notices, 1987, 22, pp. 9–25.

Johnson, Norman L.; Samuel Kotz, and N. Balak-
rishnan. 1994. Continuous Univariate Distrib-
utions, Vol. 1, 2e. NY: Wiley Interscience.

———. 1995. Continuous Univariate Distrib-
utions, vol. 2, 2e. NY: Wiley Interscience.

Judd, Kenneth L. 1998. Numerical Methods in
Economics. Cambridge, MA: MIT Press.

Kahan, William. 1997. “The Baleful Effect of
Computer Languages and Benchmarks upon
Applied Mathematics, Physics and Chemistry,”
John von Neumann Lecture, 45th Annual Meet-
ing of SIAM.

Kennedy, William J. and James E. Gentle. 1980.
Statistical Computing. NY: Marcel-Dekker.

Knüsel, Leo. 1989. Computergestützte
Berechnung Statisticher Verteilungen. Olden-
burg, München-Wien. (English versions at
www.stat.uni-muenchen.de/~knuesel/elv).

———. 1995. “On the Accuracy of the Statistical
Distributions in GAUSS,” Computational Stat-
ist. Data Analysis, 20:6, pp. 699–702.

———. 1996. “Telegrams,” Computational Statist.
Data Analysis. 21:1, p. 116.

———. 1998. “On the Accuracy of Statistical Dis-
tributions in Microsoft Excel,” Computational
Statist. Data Analysis, 26:3, pp. 375–77.

Knuth, Donald E. 1997. The Art of Computer Pro-
gramming, 3e. Reading, MA: Addison-Wesley.

Lachenbruch, P. A. 1983. “Statistical Programs for
Microcomputers,” Byte, 8:8, pp. 560–70.

L’Ecuyer, Pierre. 1992. “Testing Random Number
Generators,” in Proceedings of the 1992 Winter
Simulation Conference. J. J. Swain, D. Gold-
smith, R. C. Crain, and J. R. Wilson, eds. NY:
IEEE Press, pp. 305–13.

———. 1994. “Uniform Random Number Genera-
tion,” Annals of Operations Research, 53, pp.
77–120.

Lesage, James P. and Stephen D. Simon. 1985.
“Numerical Accuracy of Statistical Algorithms
for Microcomputers,” Computational Statist.
Data Analysis, 3:1, pp. 47–57.

Letson, David and B. D. McCullough. 1998. “Bet-
ter Confidence Intervals: The Double Bootstrap
with No Pivot,” Amer. J. Agr. Econ., 80:3, pp.
552–59.

Ling, Robert F. 1974. “Comparison of Several
Algorithms for Computing Sample Means and
Variances,” J. Amer. Statist. Assoc., 69:348, pp.
859–66.

Longley, James W. 1967. “An Appraisal of Com-
puter Programs for the Electronic Computer
from the Point of View of the User,” J. Amer.
Statist. Assoc., 62:319, pp. 819–41.

Lovell, Michael C. and David D. Selover. 1994.
“Econometric Software Accidents,” Econ. J.,
104, pp. 713–26.

MacKie-Mason, Jeffrey K. 1992. “Econometric
Software: A User’s View,” J. Econ. Perspectives,
6:4, pp. 165–88.

MacKinnon, James G. 1996. “Numerical Distrib-
ution Functions for Unit Root and Coin-
tegration Tests,” J. Appl. Econometrics, 11:6,
pp. 601–18.

Marsaglia, George. 1968. “Random Numbers Fall
Mainly in the Planes,” Proceedings Nat.
Academy Sciences USA, 60, pp. 25–28.

———. 1985. “A Current View of Random Num-
ber Generators,” Computer Science and Statistics:
16th Symposium on the Interface. L. Billard, ed.
Amsterdam: North-Holland, pp. 3–10.

———. 1993. “Monkey Tests for Random Number
Generators,” Computers and Math. with Appli-
cations, 26:9, pp. 1–10.

———. 1996. DIEHARD: A Battery of Tests of
Randomness. http://stat.fsu.edu/pub/ diehard.

McCullough, B. D. 1997. “Benchmarking Numeri-
cal Accuracy: A Review of RATS v4.2,” J. Appl.
Econometrics, 12:2, pp. 181–90.

———. 1998. “Assessing the Reliability of Statisti-
cal Software: Part I,” Amer. Statistician, 52:4,
pp. 358–66.

———. 1998a. “Algorithm Choice for (Partial)
Autocorrelation Functions,” J. Econ. Soc.
Meas., forthcoming.

———. 1999. “Assessing the Reliability of Statisti-
cal Software: Part II,” Amer. Statist., forthcom-
ing.

———. 1999a. “Econometric Software Reliability:
EViews, LIMDEP, TSP and SHAZAM,” J.
Appl. Econometrics, forthcoming.

———. 1999b. “Wilkinson’s Tests and Econo-
metric Software,” J. Econ. Soc. Meas., forth-
coming.

McCullough, B. D. and Charles G. Renfro. 1999.
“Benchmarks and Software Standards: A Case
Study of GARCH Procedures,” J. Econ. Soc.
Meas., forthcoming.

McCullough, B. D. and H. D. Vinod. 1998. “Im-
plementing the Double Bootstrap,” Computa-
tional Econ., 12:1, pp. 79–95.

McCullough, B. D. and Berry Wilson. 1999. “On
the Accuracy of Statistical Procedures in EX-
CEL97,” Computational Statist. Data Analysis,
forthcoming.

McKenzie, Colin. 1998. “A Review of Microfit
4.0,” J. Appl. Econometrics, 13:1, pp. 77–89.

Murray, W. 1972. “Failure, the Causes and
Cures,” in Numerical Methods for Uncon-
strained Optimization. W. Murray, ed. NY: Aca-
demic Press, pp. 107–22.

Newbold, Paul; Christos Agiakloglou, and John
Miller. 1994. “Adventures with ARIMA Soft-
ware,” Int. J. Forecasting, 10:4, pp. 573–81.

Park, Stephen K. and Keith W. Miller. 1988. “Ran-
dom Number Generators: Good Ones Are Hard
to Find,” Communications of ACM, 31:10, pp.
1192–201.

Press, William H.; Saul A. Teukolsky, William T.
Vetterling, and Brian R. Flannery. 1994. Nu-
merical Recipes in Fortran, 2e. New York:
Cambridge U. Press.

Priestley, M. B. 1981. Spectral Analysis and Time
Series. London: Academic Press.

664 Journal of Economic Literature, Vol. XXXVII (June 1999)

Renfro, Charles. 1997. “Normative Considerations
in the Development of a Software Package for
Econometric Estimation,” J. Econ. Soc. Meas.,
23, pp. 277–330.

Ripley, B. D. 1990. “Thoughts on Pseudorandom
Number Generators,” J. Computational Appl.
Math., 31:1, pp. 153–63.

Rogers, Janet; James Filliben, Lisa Gill, William
Guthrie, Eric Lagergren, and Mark Vangel.
1998. “StRD: Statistical Reference Datasets for
Testing the Numerical Accuracy of Statistical
Software,” NIST# 1396, Nat. Inst. Standards
and Tech.

Sawitzki, Günther. 1985. “Another Random
Number Generator Which Should Be Avoided,”
Statist. Software Newsletter, 11, pp. 81–82.

———. 1994. “Testing Numerical Reliability of
Data Analysis Systems,” Computational Statist.
Data Analysis, 18:2, pp. 269–86.

———. 1994a. “Report on the Numerical Reliabil-
ity of Data Analysis Systems,” Computational
Statist. Data Analysis (SSN), 18:2, pp. 289–301.

Silk, Julian. 1996. “System Estimation: A Compari-
son of SAS, SHAZAM, and TSP,” J. Appl.
Econometrics, 11:4, pp. 437–50.

Simon, Stephen D. and James P. Lesage. 1988.
“Benchmarking Numerical Accuracy of Statisti-
cal Algorithms,” Computational Statist. Data
Analysis, 7:2, pp. 197–209.

Stephens, Michael A. 1986. “Tests for the Uniform
Distribution,” in Goodness-of-Fit Techniques.
R. D’Agostino and M. Stephens, eds. NY:
Marcel-Dekker, pp. 331–66.

Stuart, Alan and J. Keith Ord. 1991. Kendall’s Ad-
vanced Theory of Statistics, vol. 2. NY: Oxford
U. Press.

Tauchen, George. 1993. “Remarks on My Term at
JBES,” J. Bus. Econ. Statist., 11:4, pp. 426–31.

Tezuka, She. 1995. Uniform Random Numbers:
Theory and Practice. Boston: Kluwer.

Thisted, Ronald A. 1988. Elements of Statistical
Computing. NY: Chapman and Hall.

Tjostheim, Dag and Jostein Paulsen. 1983. “Bias of
Some Commonly Used Time Series Estimates,”
Biometrika, 70:2, pp. 389–99.

Vandergraft, J. S. 1983. Introduction to Numerical
Computations. Orlando, FL: Academic Press.

Veall, Michael R. 1991. “Shazam 6.2: A Review,” J.
Appl. Econometrics, 6:3, pp. 317–20.

Vinod, H. D. 1982. “Enduring Regression Estima-
tor,” in Times Series Analysis: Theory and
Practice 4. O. D. Anderson, ed. Amsterdam:
North-Holland, pp. 397–416.

———. 1989. “A Review of Soritec 6.2,” Amer.
Statistician, 43:4, pp. 266–69.

———. 1993. “Bootstrap, Jackknife, and
Resampling Methods: Applications in Econo-
metrics,” in Handbook of Statistics: Econo-
metrics, vol. 11. G. S. Maddala, C. R. Rao, and
H. D. Vinod, eds. NY: North-Holland, pp.
629–61.

———. 1997. “Using Godambe-Durbin Estimat-
ing Functions in Econometrics,” in Selected
Proceedings of the Symposium on Estimating
Functions. I. Basawa, V. P. Godambe, and R.
Taylor, eds. IMS Lecture Notes Monograph
Series, 32, pp. 215–37.

Vinod, H. D. and A. Ullah, 1981. Recent Advances
in Regression Methods. NY: Marcel-Dekker.

Vinod, H. D. and L. R. Shenton. 1996. “Exact Mo-
ments for Autoregressive and Random Walk
Models for a Zero or Stationary Initial Value,”
Econometric Theory, 12:3, pp. 481–99.

Wampler, Roy H. 1980. “Test Procedures and Test
Problems for Least Squares Algorithms,”
J. Econometrics, 12:1, pp. 3–22.

Watson, Mark W. 1993. “Measure of Fit for Cali-
brated Models,” J. Polit. Econ., 101:6, pp.
1011–41.

Wilkinson, J. H. 1963. Rounding Errors in Alge-
braic Processes. Englewood Cliffs, NJ: Pren-
tice-Hall.

Wilkinson, Leland. 1985. Statistics Quiz. Evanston,
IL: SYSTAT, Inc. (at http://www.tspintl.com/
benchmarks).

———. 1994. “Practical Guidelines for Testing
Statistical Software,” in Computational Statis-
tics. P. Dirschedl and Rüdiger Ostermann, eds.
Berlin: Physica-Verlag, pp. 111–24.

Wilkinson, Leland and Dallal, Gerard E. 1977.
“Accuracy of Sample Moments Calculations
Among Widely Used Statistical Programs,”
Amer. Statistician, 31:3, pp. 128–31.

 McCullough and Vinod: The Numerical Reliability of Econometric Software 665

	JEL99JUNE
	The Numerical Reliability of Econometric Software
	1. Introduction
	1.1 Econometric Software Has Bugs
	1.2 Why Has No One Noticed?
	1.3 Benchmarking

	2. Computers and Software
	2.1 Computer Arithmetic
	2.2 Errors in Computation
	2.3 Misconceptions of Floating-Point Arithmetic
	2.4 “Small” Differences Matter

	3. General Benchmarks
	4. The Need for Specific Benchmarks
	5. Testing the Random Number Generator
	6. Statistical Distributions
	7. Conclusions and Recommendations
	Tables
	TABLE 1
	TABLE 2
	TABLE 3

	REFERENCES

	Pages
	Page 633
	Page 634
	Page 635
	Page 636
	Page 637
	Page 638
	Page 639
	Page 640
	Page 641
	Page 642
	Page 643
	Page 644
	Page 645
	Page 646
	Page 647
	Page 648
	Page 649
	Page 650
	Page 651
	Page 652
	Page 653
	Page 654
	Page 655
	Page 656
	Page 657
	Page 658
	Page 659
	Page 660
	Page 661
	Page 662
	Page 663
	Page 664
	Page 665

	Table of Contents
	General Index

