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On the History of the Use of Geometry 


DAVID G. HERR* 

The question of why a geometric or  coordinate-free approach to 
linear models has been subordinated to an algebraic approach is 
considered by reviewing selected papers having a geometric slant. 
These begin with R.A. Fisher's 1915 paper on the distribution of 
the correlation coefficient and continue through William Kruskal's 
elegant 1975 paper on the geometry of generalized inverses. The 
thesis is put forward that the relative unpopularity of the geometric 
approach is not due to an inherent inferiority but rather to a com- 
bination of inertia, poor exposition, and a resistance to abstraction. 

KEY WORDS: General linear model; Geometry: Coordinate free: 
Least squares; History of linear models. 

1. INTRODUCTION 

Although there is a good deal more involved in the 
general linear model than least squares estimation, the 
fundamental ideas in least squares estimation are the 
fundamental ideas in the general linear model. In both 
cases, one considers a space (set) in which data must 
lie, a subspace (subset) of this space that corresponds 
to some assumptions on the data, and the relationship 
of the observed data to this subspace (subset). 

There are two general points of view taken with 
respect to linear models-an algebraic one and a geo- 
metric one. Consideration of least squares estimation 
from each point of view will illustrate these different 
perspectives. 

We suppose we have data y = (p, ,  . . . ,y,)', which 
lie in Euclidian n-space, R". We further assume that 
there is a parameter vector /3 = (PI,P2, . . . , Pk)', 
which lies in R\  k k n,  and n x k matrix X ,  so that 
p = X p  + error. We wish to estimate p .  

2. LEAST SQUARES ESTIMATION -
ALGEBRAIC VIEWPOINT 

(Gauss 1857) and (Legendre 1806)> we 
choose as estimates of the pi 's  those values bi that 
minimize 

l r  k 

(2.1) 

where xi j  is the ( i ,j )  element of X. To minimize Q,  we 
consider the necessary conditions for a local minimum: 

aQ(p , ,  . . . , pk)lap, 
rr h. 

= 12(yi - = 01 .rijpj)(-~~il,) (2.2) 
i=  1 j= 1 
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reference Box, Hunter. and Hunter (1978). 

in the General Linear Model 

for p = 1, . . . , X. We are thus led to the normal 
equations 

r r  k rr 

1 1 .ri,)xiJ@j= l j i . r i , , ,  p = 1 , .  . . , X ,  (2.3) 
i= 1 j= 1 i=  l 

or in matrix form 
XIXp = X'y . (2.4) 

If b is the solution of these equations, p is called a 
least squares estimate of p .  The essential facts that a 
solution exists and that it minimizes Q are not inherent 
in the algebraic derivation of the normal equations. It 
is, of course, possible to prove both facts. That, how- 
ever, is not the point. The point is that setting deriva- 
tives equal to zero does not, in and of itself, guarantee 
the existence of solutions or that the solutions, when 
they exist, will yield the desired extreme of the func- 
tion. This point is made by Cox and Hinkley (1974, 
p. 284), Mood, Graybill, and Boes (1974, p. 283), and 
C.R. Rao (1973, pp. 222-223). In Rao's book, the 
normal equations, obtained algebraically, are followed 
by what amounts to the geometric argument for exist- 
ence and minimization. 

3. 	LEAST SQUARES ESTIMATION- 
GEOMETRIC VIEWPOINT 

To find values pi that minimize Q ,  we rewrite Q as 

and notice that Q is the squared distance of y from 
[XI, the subspace of R" spanned by the columns of 
X. Minimizing Q corresponds, then, to finding the point 
in [XI closest to y.  The answer is readily visualized 
as the "point in [XI directly below y," that is, the 
perpendicular projection of p on [XI. If XB denotes 
the perpendicular projection of on [XI, then xb is 
unique and 

p = ~b + Z ,  Z perpendicular to [XI. (3.2) 

Multiplying by X' we have 
X1p = x ' x ~ ,  (3.3) 

since X'Z = 0. Thus b must satisfy the normal equa- 
tions. We appear to have arrived at the same place as 

in the algebraic viewpoint. Appearances are deceiving! 
At this point we know there is a solution, b, that XB is 
unique and that for any solution, b, 

114' - xb1I25 l l -~ XP1I2> (3.4) 

for all p in Rk.  Thus b yields the global minimum of Q. 
A few remarks on the previous sketches are in 

order. In both, considerable detail has been omitted. 
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The Least Squares Estimate 

The derivation of partial derivatives and the theorem, 
which says that among the solutions of the equations 
formed by setting the aQ/ap, equal to zero are to be 
found the local extrema of Q,  have been omitted from 
the algebraic viewpoint. Similarly, the theorem that 
says that the closest point in a subspace to a point 
not in that subspace is the perpendicular projection of 
that point onto the subspace has been omitted from the 
geometric viewpoint. The derivation of partial deriva- 
tives involves limits and some geometric ideas, how- 
ever. For a unified treatment see Apostol(1969). On the 
other hand, the ideas of finite dimensional vector 
spaces used in the geometric viewpoint are finite and 
do not involve the idea of limits. For an excellent 
treatment see Halmos (1958). Thus it is the author's 
opinion that in the particular problem of deriving the 
normal equations, as well as in numerous other related 
problems, the geometric viewpoint is conceptually 
simpler than the algebraic viewpoint. 

As an additional elementary example of the fact that 
the geometric approach is simpler and more complete 
than the algebraic one, consider the problem of finding 
the distribution of s 2  = (n - I)-' l ( X i  - X12, for 
X, ,  . . . ,X, iid N(p ,a2) .  Let Y be the vector of Xi's. 
Then Y = pj + e ,  where j is the n x 1 vector of 1's 
and e is a vector of iid N(0,a2)  rv. Let P Y  = ij, the 
perpendicular projection of Y on Ij].Then s 2  = (n 
- 1)-'11(1 - P)qI2, where I is then x n identity matrix. 
Note that there exists an orthonormal basis {g,, . . . ,g,) 
of Rn,  such that {g, . . . , gn-,)  is an orthonormal 
basis of the orthogonal complement of Ij].Then 

Because g r i  Y is a linear combination of independent 
normal rv, it follows that g t i Y  is distributed as 
N(pg ' j , a2 ) .  Because g,  is orthogonal to j, g 'j = 0 and 
the g r i Y  are distributed as N(0,a2) ,  i = 1, 2, . . . , n 
- 1. Because g i  is orthogonal to g,, i f j, the gIi Y are 
uncorrelated and thus independent. It then follows 
immediately that (n - l)s2/a2 is a sum of n - 1 in- 
dependent chi-squared rv, each with one degree of 
freedom. 

Another, less elementary, example of the advantage 
of the geometric approach is in the analysis of un-

balanced, two-way designs. Suppose it is desired to 
test the hypothesis that there is no difference in the 
simple averages of cell means averaged over columns 
(along each row). If the hypothesis of no interaction is 
accepted, but the interaction sum of squares is not 
pooled with error, there are two sums of squares for 
rows that could be used-the sum of squares as if 
there were interaction and the sum of squares using the 
assumption of no interaction. Intuitively, the latter sum 
of squares should give a more powerful test than the 
former if the error sum of squares without the inter- 
action sum of squares is used in each case. But at 
least one group of researchers found this impossible to 
prove using an algebraic approach. It is very easy to 
prove using the geometric approach. The basic idea is 
to show that the noncentrality parameter for the test 
assuming no interaction is larger than that for the other 
test. This is accomplished by showing that the non- 
centrality parameter for the test assuming no interac- 
tion is the length of the hypotenuse of a right triangle, 
while the other noncentrality parameter is the length of 
one of the legs of the same triangle. 

Because the geometric approach to least squares 
estimation has considerable merit and usefulness, why 
is it not more widely used? This question has bothered 
the author for some time and has led to a consideration 
of the history of the use of geometry in the study of 
linear models. Before proceeding, let it be said that, 
regrettably, no claim to comprehensiveness can be 
made for this study. In fact, the. author earnestly 
solicits any information on additional references from 
readers of this paper. 

The easiest and perhaps best answer to the question 
may be tradition. It appears that neither Gauss nor 
Legendre could have thought of least squares from the 
geometric viewpoint described here. They did not have 
the requisite vector space ideas (May 1977). Thus 
momentum may be keeping this tradition alive. 

4. PAST EXAMPLES OF THE 
GEOMETRIC APPROACH 

R.A. Fisher (1915), however, was not dissuaded 
from thinking of statistical questions geometrically. 
This may have been due to his oft-referred-to insight 
or, as H.O. Hartley (1978) surmised recently, his poor 
eyesight. Whatever the reason, his eyes or his mind, 
he definitely thought geometrically from time to time. 
The clarity with which Fisher saw concepts was not 
easily transferred to the readers of his papers. Therein 
lies the germ of another possible answer to the ques- 
tion. To explore this embryonic explanation, let us 
consider papers of seven prominent statisticians who 
have written about linear models using a geometric 
approach. They are Fisher (1913, Bartlett (1933-34), 
Durbin and Kendall(195 l),  Kruskal(l961, 1968, 1973, 
Zyskind (1967), and Watson (1967). A short comment 
on the use of geometry or geometric thinking in each 
of the eight papers follows. 
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4.1. Fisher 1915 

In this paper, Fisher is concerned with the distribu- 
tion of the correlation coefficient of a sample of n pairs 
from a bivariate normal distribution. His approach 
might be termed pure geometric in that there is very 
little of an analytic nature between the verbal descrip- 
tion of the geometry and the conclusion stated as a 
formula. A reasonably typical example is provided by 
a part of his discussion of transforming the 2n-variate 
normal density of the sample of pairs (x, , p , )  to a density 
in terms of the quantities 2,p1 = [n-l 1 (X - i ) 2 ] ,  
j, p2 = [n-I 2 ( p  - j )2] ,  and the sample correlation 
coefficient r.  

An element of volume in this n dimensional space may 
now without difficulty be specified in terms of .i- and p , ;  for 
given .i and p,. P (the point (.r,. x Z ,. . . , x,,)) must be on a 
sphere in n - I dimensions, lying at right angles to the line 
OM (the line through the origin in the direction ( I , [ ,  . . . . I ) ) ,  
and the element of volume is 

where C is some constant, which need not be determined 

If you see it, it's beautifully elegant; if you don't, 
there is very little there to help improve your vision. It 
seems the kind of discussion that inspires the reader 
to honor the genius that produced it, but does not 
inspire him to try to emulate the approach. 

4.2. Bartlett 1933-34 

Bartlett is concerned with the implications and 
advantages of thinking of a sample of size n as an 
n dimensional vector. His approach might be termed 
analytic geometric in that each geometric idea is repre- 
sented by analytic formulas. This enables the reader to 
educate whatever geometric insight he has with the 
analytic formulas in an iterative way, so that the net 
result is a deeper understanding of both the geometric 
view and the analytic one. An example is provided by 
Bartlett's discussion of the analysis of the row vectors  
of observations from a Latin square design. 

We have a classification in rows, columns, and treatments. 
We write 

S = R + C + T + E + M ,  (4.1) 

where R = (.i, - i)is the vector representing the differences 
of row means from the general mean, C = (.i-, - .f) similarly 
for columns, T = (.i-, - i)for treatments, M = (.i) as before, 
and 

E = - - - ,  + 2f)  (4.2) 

is the residual error term. From the algebraic relations 

RC' = RT' = . . . = E M '  = 0, (4.3) 

we have. analogously to (4. I )  

S'= R ' +  CZ + Tl + E2 + M2, (4.4) 

He had previously mentioned that the algebraic rela- 
tions meant the corresponding vectors were per-
pendicular and that S 2  would be used for the squared 
length of S .  Although the notation is rather lean, the 

ideas and approach have the fullness of the modern 
approach of Kruskal, for example. 

4.3. Durbin and Kendall 1951 

In their study of the geometry of estimation, Durbin 
and Kendall seem to this author to revert to the pure 
geometric approach of Fisher. As an example consider 
their discussion of finding the minimum variance, 
unbiased estimator of the common mean of a sample 
x , ,  . . . , x, of independent, identically distributed 
random variables with common variance a 2 .The esti- 
mator is of the form 2 hixi with the unbiasedness 
restriction 2 hi = 1.  

Consider now a Euclidian [ / I ]  space with co-ordinates 
A,, . . . , A,, ,  which we call the estimator space. The hyper- 
plane (2)(\' A, = I )  corresponds to the range of values of A 
giving unbiased estimators and any point P in it determines 
just one estimator. Now the variance of the estimator is 
a' \' hZ, and hence is $ O f L  where 0 is the origin. It follows 
that this is a minimum when P is the foot of the perpendicular 
from 0 on to the hyperplane. Symmetry alone is enough to 
show that the values of the A's are then all equal. 

Again if you see it, it is elegant; if you don't, it 
is a little hard to follow. 

4.4. Kruskal 1961 

One of the two stated purposes of this paper is "to 
describe the coordinate-free approach to Gauss-Markov 
(linear least squares) estimation." This approach is, 
like that of Bartlett (1933 -34), an analytic geometric 
one. Kruskal notes in this paper that "it is curious the 
coordinate-free approach to Gauss-Markov estimation, 
although known to many statisticians, has infrequently 
been discussed in the literature on least squares and 
analysis of variance." He further indicates that there 
are two major motivations for emphasizing the co-
ordinate-free approach. 

First, it permits a simpler, more general, more elegant, and 
more direct treatment of the general theory of linear estima- 
tion than do its notational competitors, the matrix and 
scalar approaches. Second, it is useful as  an introduction to 
infinite-dimensional spaces, which are important, for ex-
ample, in the consideration of stochastic processes. 

Kruskal credits L.J. Savage with introducing him to 
the coordinate-free approach. ~h~ second section of 
this paper provides a succinct primer on the coordinate- 
free approach. It seems that Kruskal hoped his paper 
would encourage more statisticians to adopt this 
approach to linear models. It does not appear that this 
hope was realized during the next 10 years or so. -

4.5. Zyskind 1967 

In stating conditions under which sample least 
squares estimators are also best linear unbiased 
estimators, Zyskind refers to "r orthogonal eigen- 
vectors" of the variance-covariance matrix forming 
"a basis for the column space" of the design matrix. 
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Although this work should probably be regarded as an 
example of the analytic geometric approach, there is 
a great deal more emphasis on the analytic than on the 
geometric. In fact, its inclusion in this list is due in 
large measure to this author's view of the paper as the 
precursor of the more geometric work that Zyskind 
did with his student Justus Seely (1970a, b). It is 
interesting to note also that (Kruskal 1961) is not 
referenced in this paper. 

4.6. Watson 1967 

Following close on the heels of Zyskind (1967), this 
paper illustrates Kruskal's contention that coordinate- 
free linear models are closely related to stochastic 
processes, for Watson makes extensive and effective 
use of the spectral decomposition of the variance- 
covariance matrix to study the error vectors in least 
squares regression. This use of a convenient basis 
rather than a basis fixed at the outset is an excellent 
illustration of the fact that coordinate free does not 
mean freedom from coordinates so much as it means 
freedom to choose the appropriate coordinates for the 
task at hand. That Watson is thinking geometrically 
is illustrated by the following solution to least squares 
regression. 

"If a perpendicular is dropped from the point in 
n-space with position p onto the regression space, the 
foot of the perpendicular is Xb, where b is the least 
squares estimate of p." Watson's work is more nearly 
an example of the analytic geometric approach than 
Zyskind's (1967), but it is still rather heavy on the 
analytic and, except as noted, uses the usual coordinate 
system. Watson is aware of Kruskal's work in as much 
as he foretells the existence of Kruskal (1968), but he 
still does not reference Kruskal's 1961 article. 

4.7. Kruskal 1968, 1975 

These two papers are elegant examples of the analytic 
geometric approach to linear models. In Kruskal 
(1968), the question of equality of simple least squares 
and best linear unbiased estimates, which was con- 
sidered in Zyskind (1967) and Watson (1967), is treated 
using a coordinate-free approach. The comparison of 
the parts of the three papers dealing with this question 
is very instructive. The simplicity and beauty of the 
coordinate-free approach is clearly demonstrated by 
such a comparison. 

In Kruskal (1975), an analytic geometric approach 
is used with such skill and grace that the paper ought 
to be required reading for anyone who might be tempted 
to deal with generalized inverses. 

We have singled out eight papers to discuss in some 
detail, but they do not tell the whole story of the use of 
geometry in linear models. As we have mentioned, 
L.J.  Savage evidently was instrumental in getting 
Kruskal interested. Professor R.C. Bose, whose notes 
on linear models were used for years by graduate 
students in statistics at Chapel Hill, has, through these 

notes, acquainted a large segment of the statistical 
profession with the comprehensiveness of the analytic 
geometric approach. Yet he did not stress the geometric 
ideas when teaching this course. G.A.F. Seber (1966, 
1977) is another author who obviously appreciates the 
geometric ideas inherent in linear models. The book 
by Scheffe (1959) is a classic in which the geometric 
ideas appear as asides. It is as though Scheffe appreci- 
ated the elegance of the geometry but didn't believe 
the book would be accepted if it were all done ge- 
ometrically. The dust jacket features "the'' picture for 
illustrating the geometry of hypothesis testing in a 
linear model. Other papers using an analytic geometric 
approach that have appeared in the last 10 years 
include: Seely (1970a, 1970b), Seely and Zyskind 
(1971), Cleve!and (1971), Burdick et al. (1974), 
Haberman (1973, and Herr (1976). Except for Kruskal 
and possibly Bartlett, no one seems to have made an 
attempt to promote the coordinate-free or analytic 
geometric approach to linear models in print.' 

5. CONCLUSION 

There still appears to be a great reluctance on the 
part of many to adopt this approach. Why? 

Theory 1 : The tradition of an algebraic approach is 
so strong that it will take a lot of effort and time to 
make a change. 

Theory 2 :  The use by Fisher (1915) and Durbin and 
Kendall (1951) of the pure geometric approach con- 
vinced two generations of statisticians that geometry 
might be all right for a gifted few, but it would never 
do for the masses. 

Theory 3 :  To fully appreciate the analytic geometric 
approach and to be able to use it effectively in 
research, teaching, and consulting requires that the 
statistician have an affinity for and talent in abstract 
thought. Dealing with abstractions is essentially a 
mathematical endeavor, and some statisticians eschew 
mathematics whenever possible. 

Theory 4 :  The analytic geometric approach is in- 
herently inferior to the more common matrix algebra 
approach. 

An Opinion: It is the present author's opinion that 
Theory 4 is untenable. The papers by Kruskal (1961, 
1968, 1975) are sufficient evidence to refute this theory. 
As for the other three, they are probably all true to 
some extent. Theory 3 represents a most dangerous 
state of affairs. The paper (Box 1976) notwithstanding, 
it seems a mistake to give any encouragement to pro- 

' Several references not explicitly mentioned in the text are never- 
theless of interest. These are Box, Hunter, and Hunter (1978). 
Corstan (1958), Draper and Smith (1966), Kolmogorov (19461, 
Zyskind and Martin ( 1969), Maes ( 19671, Eaton ( 19701, Bose ( 1944, 
1961) and Magness and McGuire (1962). 
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grams that tend to produce statisticians of the kind 
described in Theory 3. 

[Received May  1978. Revised June 1979.1 
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