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In this section, The American Statistician publishes articles and notes and notes should be useful to a substantial number of teachers of such 
of interest to teachers of the first mathematical statistics course and a course or should have the potential for fundamentally affecting the 
of applied statistics courses. To be suitable for this section, articles way in which the course is taught. 

Geometry, Statistics, Probability: Variations 

PETER BRYANT* 

This article draws together some common geometrical 
ideas and their statistical and probabilistic analogs and 
outlines them for teaching elementary statistical ideas 
to students inside and outside the mathematical sci- 
ences. The main benefit from this approach is an appre- 
ciation of the surprising power of a small number of 
underlying principles. The approach emphasizes the 
equivalence of the notions, expressed in different "lan- 
guages," rather than any one expression by itself. 

KEY WORDS: Projections; Elementary statistics; Ge- 
ometry. 

1. INTRODUCTION 

For the past five years or so I have presented elemen- 
tary statistical ideas in a manner that emphasizes the 
equivalent expression of some common ideas in the 
different languages of geometry and statistics. The 
presentations varied from two-hour lectures to week- 
long seminars to full-semester courses. All enjoyed 
some success and followed, more or less, the approach 
described in this article. 

Margolis (1979) points out that geometry seems to be 
the natural way to emphasize the unity of the funda- 
mental ideas. The projection gives the best fit. and the 
angle measures how good that fit is. Students from out- 
side the mathematical sciences should understand this 
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on a Common Theme 

point: There are not really that many formulas; there 
are, however, many variations on a common theme. If 
they can learn that theme and understand that the vari- 
ations are only variations, they will be better able to 
apply the fundamental principles, and thus will, per- 
haps, understand some of the fascination mathe-
maticians feel for the geometric expression of statistical 
ideas. 

In reviewing an earlier version of this article, a per- 
ceptive referee noted that getting students to under- 
stand this underlying unity 

. . . i s ,  of course. !he problem in teaching any mathematics. The 
ability to transfer common ideas from one context (language) to 
another is evidently not naturally present in most students. Thus 
we have, for example. biological, psychological, business, nursing 
statistics. So although. . . it IS important to show students the com- 
mon thread which holds the subject together. I would not be sur- 
prised to learn that many. if not most, teachers and students find 
it easier to teach and learn the separate ideas. blissful in their 
ignorance of the common thread. 

Indeed, as Herr (1980) points out, the geometric ap- 
proach has fallen out of favor after heavy use in the 
early days of mathematical statistics. 

I feel that perhaps one reason for this lack of unity is 
that the relevant material has not been published in the 
appropriate elementary-level literature. Thus, although 
the expression of similar ideas in terms of geometry. 
analytic geometry, and statistics is exploited system- 
atically in Dempster (1968). for example. it is done at a 
high mathematical level, and nothing seems to be avail- 
able at the level of The Teacher's Corner. 

Sections 2 through 5 contain the relevant ideas of 
geometry, analytic geometry, statistics, and proba-
bility. Section 6 contains comments on their presen- 
tation and some suggested references. None of the ma- 
terial is new. 

2. GEOMETRY 

In this section, we show how to express ordinary geo- 
metric ideas-lines, planes, length, distance, 
and projections-in terms of vectors and inner prod- 
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Figure 1. Vectors and vector addition. 

ucts. We do this to introduce two important ideas: (a) 
We can express familiar (in this case geometric) ideas in 
another language, the language of vector spaces. (b) 
Whenever something has the properties of a vector, we 
can interpret it geometrically, however we may have 
thought of it at first. 

Vectors 

Using vectors and some simple operations on them, 
we can express the ideas of line segments, lines, planes, 
and plane figures such as triangles. In Figure 1, consider 
the plane L and a particular point in L, called the ori- 
gin, 0 (zero). We use letters such as x and z to denote 
other points in L. We also use letters like x and z to 
denote the directed line segments from 0 to the points 
x and z ,  respectively. We drew arrows on the lines of 
Figure 1 to show this. In practice, such ambiguity of 
notation is not so troublesome as one might at first 
imagine. 

We call directed line segments vectors. Thus the vec- 
tor x is the directed line segment from 0 to the point x. 
Vectors have length and direction. The vector from 0 to 
x is not the same as the vector from x to 0, for although 
they have the same lengths, they go in opposite direc- 
tions. In general, we call two vectors equal if they have 
the same length and direction, even if they start at dif- 
ferent points. By this rule, for example, the vector 
shown by a dashed line in Figure 1 is equal to the vector 
z ,  because it has the same direction and length as z, 
even though it starts at point x, not at 0. We mentally 
move all vectors to begin at the origin 0, retaining their 
original directions and lengths. ("Equivalent" might 
seem more appropriate here than "equal," but the lat- 
ter is convenient later.) 

We speak of adding the vectors x and z, obtaining a 
third vector x + z. Geometrically, we mean by this that 
we start at 0 and proceed in a direction and for a length 
given by vector x. We then proceed in a direction and 
for a length given by vector z, finally arriving at a point 
we call x + z. Adding x and z means placing the begin- 
ning of z on the end of x. The sum is the vector from 0 
to the end of z. In this way, x, z, and x + z form the 
triangle in Figure 1. We will see in Section 3 how this 

Figure 2. Vector subtraction. 

corresponds to our ordinary idea of addition of num- 
bers. For now, it is just a definition. 

We can also subtract vectors. The vector from x to z 
is the difference vector z - x, for it is what must be 
added to x to obtain z according to our new definition 
of addition. See Figure 2. By this definition, then, 
z = z - 0 and -z = 0 - z. Note that -z has the same 
length as z, but goes in the opposite direction-it is 
what we would have to add to z to obtain 0 (since we do 
not care about the starting point). 

We also speak of multiplying vectors by numbers 
(called scalars to distinguish them from vectors). See 
Figure 3. By the vector 32 we mean a vector in the same 
direction as z, but three times as long. (Equivalently, it 
is the vector z + z + z. ) Geometrically, this is an exten- 
sion of the line segment from 0 to z. In general, the 
vector cz is c times as long as z. If c >0, cz has the same 
direction as z; if c <0, cz has the opposite direction. 
Thus (-f)x is as shown in Figure 3. 

A vector x determines a line called L (x). This line is 
the indefinite extension in both directions of the line 
segment from 0 to x. In vector terms, L(x)  consists of 
all scalar multiples of x. Every point on L(x)  is the 
endpoint of some multiple of the vector x. L(x)  and 
L(z)  are indicated by dashed lines in Figure 3. 

We can reach any point in the plane L of Figure 3 by 
starting at zero, proceeding in direction x for some dis- 
tance and from there proceeding in direction z for some 
(other) distance; that is, any point in L can be expressed 

Figure 3. Scalar mulbplication and subspaces. 
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The fundamental nature of the inner product be-
comes clearer when we realize that once we know the 
inner product of two vectors, we also know the lengths, 
distances, and angles related to the two vectors: 

Length: x l 2  = (x,x) 

Figure 4. The law of cosines. 

as ax + bz for some scalars (numbers) a and b, using the 
preceding definitions of addition and scalar multipli- 
cation. As long as x and z are not parallel to each other, 
there is one and only one such linear combination of x 
and z for every point in L. In this sense, x and z together 
determine the plane in the same way in which x and z 
individually determine L (x) and L (z), respectively. We 
thus write L = L (x,z) = all linear combinations of x and 
z. L (x), L (z) and L (x, z) are examples of linear spaces 
-spaces by analogy with our ordinary ideas of space (as 
we will see), and linear because they are composed of 
linear combinations. Since L(x)  is contained within 
L (x,z), we call it a subspace. Note that linear subspaces 
always contain 0. 

Line segments correspond to vectors; the sides of 
plane figures are associated with vector addition; and 
planes and lines through the origin are analogous to 
linear combinations of vectors. 

Lengths, Distance, Angles, and Inner Products 

By the length of a vector x, Ix , we mean the length 
of the line segment from 0 to x. The distance from x to 
z is the length of the line segment from x to z ;  that is, 
it is the length of z - x, I z -x 1. In Figure 4, consider 
the triangle whose vertices are 0, x, and x + z. The law 
of cosines says that 

where 0 is the angle between the vectors x and z. When 
0 = 90" (x and z are at right angles), the triangle is a 
right triangle, cos (0) = 0, and (2.1) reduces to the fa- 
miliar law of Pythagoras: 

The difference between (2.1) and (2.2) is the quantity 
2 1 x I 1 z cos (0), which is a measure of how much the 
Pythagorean relation (2.2) fails to hold-the extent to 
which x and z are not at right angles. This quantity is a 
fundamental description of the relationship between 
the two vectors x and z, and we shall study it further. 

Given two vectors x and z, the quantity 

where 0 is the angle between x and z, is called the inner 
product of x and z. Using this notation, (2.1) becomes 

which corresponds to the ordinary algebraic equation 
( a + b ) 2 = a 2 + b 2 + 2 a b .  

Distance: z - x  1 2 =  Ix ' +  Iz 1'-2(x,z) 

Angle: cos (0) = (x,z)/(I x 1 z 1 ) 

Once we know the inner product, then, we know the 
geometry. Inner products satisfy 

(x,x)2 0 and (x,x) = 0 iff x = 0 

(CX+ dy, z )  = c(x,z)+ d(y ,z ) .  (2.5) 

In particular, two vectors x and z are orthogonal if and 
only if 

(x, z )  = 0. (2.6) 

Vector Spaces 

We saw previously that plane geometry can be ex- 
pressed in terms of vectors, vector addition, scalar mul- 
tiplication, and inner products. We can do the same for 
three-dimensional geometry. Instead of a point x in a 
plane, we have a point x in space. The directed line 
segment from the origin to x is a vector x. The inner 
product of any two vectors x and z is still defined by 
(2.3), for although the vectors are in space, any two of 
them lie in some plane, and the angle between them is 
well defined. 

Thus by addition, scalar multiplication, and inner 
products of our vectors in space, we obtain the usual 
notions of three-dimensional Euclidean geometry. In- 
deed, the very notion of dimension is related to these 
ideas. A line such as L(x) is determined by a single 
vector x-it is one-dimensional. A plane L (x,y) is de- 
termined by two collinear vectors, x and y. Our ordi- 
nary idea of space is three-dimensional: Any point can 
be represented as a linear combination of three non- 
coplanar vectors, and we could call it L (x,y,z). L (x,y) 
would be a two-dimensional subspace of L (x, y, 2)-a 
plane through the origin. L(y ,z )  would be another, 
different subspace. In general, the minimum number of 
vectors required to determine a subspace is called the 
dimension of the subspace. 

A (finite-dimensional) vector space is an abstraction 
of this approach to geometry. We say we have such a 
vector space whenever (a) we have a collection of ele- 
ments, called vectors, that can be added and multiplied 
by scalars as above; and (b) the inner product of any two 
vectors is defined and satisfies (2.5). In this approach 
we do  not describe what vectors are; we describe how 
they behave. Anything that behaves this way is a vector. 
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Figure 5. Projections. 

Two important complementary ideas emerge from this 
approach: (a) Though the idea is inspired by common 
geometrical ideas, the elements of a vector space need 
not appear geometric on the surface. (b) Once an inner 
product is defined, we may interpret the elements of a 
vector space geometrically, whatever their "true" na-
ture. For example, consider random variables x and y. 
Their sum and difference are also random variables, 
and so is cx + dy for any numbers c and d. That is, 
random variables can be added and multiplied by sca- 
lars, which makes them vectors. If an appropriate inner 
product is defined, we can think of random variables 
geometrically; then linear combinations of random vari- 
ables are like planes through the origin, and so forth. 
We will return to this example in Section 5. 

Projections 

In Figure 5, we have the orthogonal projection PL(2) 
of a point z onto a plane L containing 0. Alternatively, 
we could say the vector PL(z)  is the orthogonal pro- 
jection of the vector z onto L. Two properties define the 
orthogonal projection: 

Property A: PL(z)  is in the plane L; and 
Property B: z - PL (z) is orthogonal to every vector in 

L ; that is, (x,z - PL(2)) = 0 for every x in L. 

The following simple theorems give some important 
properties of projections. The proofs illustrate well the 
remarkable power of inner products. They also make 
good exercises for advanced students. (Use (2.5), (2.6), 
Properties A and B, and prove them in the order listed.) 

L 


Figure 6. Measuring distance to a plane. 

Theorem 1(TI). z is in L if and only if PL(2) = Z. This 
says that if z is already in the plane L, projecting it does 
not change anything; conversely, any vector unchanged 
by projecting it into L must have been in L to begin 
with. 

Theorem 2 (n).z is orthogonal to L if and only if 
PL(z)= 0. This says that if z is orthogonal to L, pro-
jecting it into L yields nothing; conversely, anything 
that yields nothing when projected into L must have 
been orthogonal to L to begin with. 

Theorem,3 (T3). PL[PL (z)] = PL(2). Projecting the 
projection does not change anything, for PL(z) is in L, 
and thus (TI)  applies. 

Theorem 4 (T4). / z l 2  = / P L  (z) l 2  + / z - P L  (2) 1 2 .  This 
is the law of Pythagoras. 

Theorem 5 (T5). For each vector z ,  the projection is 
unique. That is, if P t L ( z )  and Pt tL(z)  are two projec- 
tions of the same point z onto the same subspace L, 
then P tL(2) = PttL(2). 

Theorem 6 (T6). Of all the vectors in L, PL(z)  is the 
closest to z. 

Theorem 7 ( 2 7 ) .  Projections are linear: PL(ay + z) 
= aP,(y) + PL(z).  

The proof of (T6) is instructive (see Figure 5). Consider 
any other point Q in L. From Property B, z - PL(z )  is 
orthogonal to the vector Q - PL (2). The law of Pythag- 
oras then implies that 

The inner product form of this argument is 

~ Z - Q ~ ~ = I Z - P L ( Z ) + P L ( Z ) - Q I *  

(using Property B) 

2-12 -PL(z )? .  

Such parallel expression of ideas in the "languages" of 
geometry and inner products is a recurrent theme in the 
discussion that follows. 

Pedagogically, this proof offers the additional advan- 
tage of solving a minimization problem by appealing to 
familiar geometric notions rather than to calculus. For- 
mally, of course, we would have to verify the existence 
of a vector with Properties A and B, and so forth. 

Consider Figure 6. How far away from the plane L is 
the vector y? The vector z? One natural measure of 
these distances comes from the squared distances to the 
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closest points in the plane, the numbers ly - PL(y)1' 
and I z - PL(z)  12. These measure the absolute squared 
distances from the endpoints of the vectors to the plane. 
According to these measures, z is further away from L 
than y is. Another measure is the angle I$ between z and 
L. The quantity cos2(&) = PL(z)  * I  z 1 '  measures, on a 
scale of 0 (when z is orthogonal to L )  to 1 (when z is in 
L ) ,  the extent to which z is close to L, that is, the extent 
to which z can be represented as a linear combination 
of vectors in L. Both measures have their uses. The 
expression in z - PL(z) I is naturally interpreted as dis- 
tance, whereas the angle has the advantage that if the 
vector z is extended or shrunk, the measure of closeness 
is unchanged. The vectors y and z are equally close to 
L by this measure, and this can be useful in statistical 
applications. In summary: 

Criterion I. The projection PL(2) is the closest vector 
in L to z. 

Criterion 2. Either z - PL(z)  or the angle & (or 
some function of it, such as its cosine) may be used to 
measure how close PL(z)  is to z. 

We will return to these principles in Section 4. Note 
that both the projection and the angle depend on the 
inner product. 

3. ANALYTIC GEOMETRY 

In Section 2, vectors and inner products were intro- 
duced and used to describe geometric ideas. It is only 
when we express the ideas in terms of coordinates, 
though, that we can actually compute anything. We re- 
view coordinate geometry briefly in this section and use 
it to lead to the ideas of n-dimensional geometries. 

Coordinates 

Consider an ostensibly new vector space L, defined 
as follows: 

1. The vectors (elements) of L are all the triples of 
numbers of the form z = (z,, z?, Z3), x = (xl, x?, 
x3), and so on. 

2. 	Addition of any two vectors is defined component 
by component: (z + x )  = (2, + x,, z, + x?, 2 3  + x3). 

3. Scalar 	 multiplication is defined similarly: 
cz = (cz,, CZ?, cz,). 

4. The inner product of any two vectors is defined by 

It is easy to verify that the definitions of a finite-dimen- 
sional vector space are satisfied for L. The length of a 
vector z is then given by 

Consider the vectors i, = (1, 0, 0), i2 = (0, 1, O), and 
i, = (0, 0, 1). Using (3.1) and (3.2), we see that 

1 il l 2  = 1 i21 '  = 1 i, l 2  = 1 and 

z = ( z ,  , z 2 , z 3  )=z,i ,  + z 2 i 2  + z3i3 

Figure 7. Coordinates and axes. 

That is, the vectors i,, i2, and i, are unit vectors (of 
length 1) that are mutually orthogonal. Further, any 
vector z = (z,, z,, 23) can be written in the form 

as a linear combination of i,, i2, and i,. The vector space 
L is thus L = L (i,, i2, i,), the three-dimensional space 
determined by i,, i,, and i3. Figure 7 shows this rela- 
tionship geometrically. The axes i,, i2, and i3 are shown 
as mutually orthogonal. The coefficients z in (3.4) are 
called the coordinates of z relative to these axes. 

A triple of numbers (z,, z2, z3) may be interpreted 
geometrically, then, if one thinks of it as a vector in 
space determined by (3.4), relative to some imagined 
set of mutually orthogonal axes i,, i2, and i3 and inner 
product (3.1). It can be verified that the angles, cosines, 
and so on derived from this inner product agree with 
our ordinary geometric notions. In particular, the vec- 
tors x and z are orthogonal when (3.1) vanishes. A 
standard result in analytic geometry is that 

which agrees with what (3.1) suggests. Equation (3.2) is 
a three-dimensional law of Pythagoras. We thus have a 
correspondence between geometric ideas and triples of 
numbers, achieved by interpreting the triples as a vector 
space with inner product given by (3.1). 

From Section 2, we know that if we have vectors and 
an inner product, we have essentially determined a 
geometry. From this point of view, there is no reason to 
limit ourselves to three dimensions. We could think of 
any collection of n numbers z,, z,, . . . ,Z, as a vector 
z = (z,, z,, . . . ,z,), or as the point whose coordinates 
are the z's relative to some imagined set of n orthogonal 
axes. In this scheme, the vectors are the n-tuples of the 
form z = (z,, z,, . . . ,z,), and addition and scalar multi- 
plication are defined in terms of the individual coordi- 
nates. Our axes are in the directions of i, = (1 ,0 , .  . . ,O), 
i, = (0,1, .  . . ,O), and in = (0,0,.  . . , I ) .  Our n-dimen- 
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sional space is L (i,, i?,. . . ,in), the set of all linear com- 
binations of il, . . . , in.  The inner product of x and z is 

It is easy to verify that with these definitions our n- 
tuples behave like vectors, and (2.5) is satisfied. In an 
abstract way, then, n-tuples of numbers are like vectors 
in an n-dimensional space. They have lengths I z l 2  = 

(z,z), and so forth. In three dimensions (n = 3), it is 
exactly our ordinary geometry. When n >3, it is an 
extended (imaginary?) analog of our ordinary ideas. 
For example, L(x, z), the set of all linear combinations 
of x and z, is now a two-dimensional plane through the 
origin of an n-dimensional space, and so on. Although 
the definitions like (3.6) are given in coordinate form, 
we could by this means think about n tuples of numbers 
geometrically, if it were useful. 

Other Axes 

We can compute inner products from (3.6) if we know 
the coordinates. This formula is for one particular set of 
axes. If we were to use a different set of orthogonal 
axes, each geometric point z would have a new set of 
coordinates to be used in computing inner products 
(and from them, lengths, angles, etc.). As long as the 
axes are orthogonal, the formula will be of the general 
form (3.6). If the axes are not orthogonal, a more com- -
plicated formula is required. 

On the other hand, fundamentally geometric notions 
like length, angles, and so forth determined from inner 
products are the same for any coordinate system. For 

example, the angle between two vectors does not de- 
pend on which axes you use. In this sense, the axes are 
a computational crutch. We can use any set we like, and 
we will get the same answers no matter which ones we 
use, at least for the geometric aspects of things. 

Other Inner Products 

The inner product (3.6) is the Euclidean inner prod- 
uct because it corresponds to ordinary Euclidean geom- 
etry when n = 3. It is by far the most common inner 
product used for n-tuples of numbers and the only one 
we need in this article, but it is by no means the only one 
that might be defined. Any function of the x's and z's 
that satisfies (2.5) is a satisfactory inner product. When 
interpreted according to our conventions (e.g., (z,z) is 
the squared length of z ) ,  it will generate its own geom- 
etry, which may or may not agree with our ordinary 
notions. 

We will see another inner product in Section 5, 
though not for n-tuples of numbers. We may summarize 
the results of Sections 2 and 3 as shown in the first two 
columns of Table 1: Each notion of geometry has a 
corresponding expression in coordinate form, and we 
can think of them in whatever way seems convenient. 
Instructors may want students to construct Table 1or its 
equivalent, with successive columns filled in as the var- 
ious topics are covered. 

4. STATISTICS 

Consider the following common situations of descrip- 
tive statistics: 

Table 1. Vector Space Ideas Expressed in Different Ways 

Geometric Expression 
Vector 
Space Idea Coordinate-Free Form Analytic Form 

Vector z 	 Directed line segment z = (z,, . . . ,z,) 
from 0 to z 

Vector z - y 	 Directed line segment z - y = 
from y to z (zl - Y ~ , . . . , z ~ - Y ~ )  

Inner product of Measure of x,z, + . . . +x,z, 
x and z, (x, z) Nonorthogonality 

Squared distance, z:+...+z,2 
0 to z 

l z  - Y  l2 	 Squared distance, (2, -y,)' + . . . + (z,-y,)' 
y to z 

(x, z)=O 	 Orthogonality: x, z perpendicular 

All vectors of the Plane L(x, y, z, . . .) through 0 
form ax +by  + cz + determined by vectors x, y, 2 , .  . . 
A vector P in L(x, y, . . )  Projection P,(z) of z onto L(x, y, . . .) 
such that (x - P, Q) = 0 for 
every Q in L 

"45-degree" vector J 	 J = ( I ,  1, . . . ,  1) 

2 (x, -XI2 

(X - PJ(x),z - PJ(z))/ Cosine of angle between x - Pj(x) and 
I X  - PJ(x)1 . I  z - PJ(z)11 Z - P J ( ~ )  

(x - Pj(x), z - Pj(z)) = 0 x - PJ(x) and z - Pj(z) are perpendicular 

Statistical Expression Probabilistic Expression 

Dataz,, . . . ,z, Random variable z 

Differences Random variable 

Z, - y,, . . . ,zn- yn Z - Y  

Sum of cross E(xz) 

products 


Sum of squares E (z 2, 

of z 


Sum of squared E(z -Y) '  

differences 


All models of the All square-integrable 

form ax + by + cz + functions of x, y, z, . . . 

The best-fitting model E(z / x, y, . . .) 

of the form 

ax+by  + c z +  . . .  

Constant (1, 1,. . . , 1) Constant 1 

(n - 1) x sample Variance of x 
variance of x 

Sample correlation Correlation of 
of x and z x and z 

x and z are x and z are 
uncorrelated uncorrelated 
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(Q l )  I wish to summarize my data (zl, z?, . . . ,z,) 
by a single number a. What is the best number a to use? 
How good a summary is it? 

(Q2) I have measurements (y , ,  y2 , .  . . ,y,) and (zl,  
z2,. . . ,2,) on two characteristics y and z of my n experi- 
mental units. How strongly related (if at all) are these 
characteristics? 

(Q3) I suspect that certain characteristics z, x, and y 
of my n experimental units are related (at least approx- 
imately) by a linear function z = a + bx + cy. What lin- 
ear function best describes the relationship? How good 
a description is it? 

In the classical approach to these situations, we use 
the least squares criterion to define best fit. In this sec- 
tion, we show how that approach is related to the geo- 
metric ideas of Sections 2 and 3. Once that relationship 
is clear, the least squares approach offers a convenient 
and unified approach to various situations that are often 
handled by individual formulas. Formal principles of 
inference also justify the least squares approach, but for 
many pedagogical purposes, its unity, simplicity, and 
intuitive geometric appeal are justification enough. 

It will be convenient to think of the data in (Q1)-(Q3) 
as a matrix containing n rows (one for each observation 
or experimental unit) and one column for each charac- 
teristic or variable, as follows: 

and to interpret the n-tuples that make up the columns 
of the matrix as vectors. The constant vector J = (1, 
1, . . . , 1) plays a special role in what follows. We will 
interpret the n-tuples z = (zl,  zz, . . . ,z,,) geometrically, 
of course. 

According to the least squares principle, the best 
single-number summary in (Q l )  is the number a that 
minimizes 

C (2, - a)'. (4.1) 

Using the preceding definitions and the Euclidean inner 
product, (4.1) can be written as 

Geometrically, then (see Figure 8), the least squares 
approach to (Q l )  says that we should consider as possi- 
ble models all multiples a J  of J and choose that one 
closest to z. "Least squares" means "shortest dis-
tance,'' using the Euclidean inner product. 

The geometry of Section 2 tells us that the closest 
point is the projection Pj(z) of z onto J. Using the inner 
product characterization of projection, we can then de- 
rive the value for a :  

By property A ,  PJ(z)  = a J  for some a. (4.3) 

By property B, (z - Pj(z),  J )  = 0. (4.4) 

a J  
possible models 

Figure 8. A simple statistical model. 

Substituting (4.3) into (4.4), we obtain (z - aJ ,  J )  = 0, 
or 

(2, J )  = a(J ,  J ) .  (4.5) 

Using the Euclidean inner product, (4.5) becomes 
z, = an, or 

a = 2 = ( l in)  C z,. (4.6) 

The first question of (Q l )  is thus answered: The sample 
mean r is the best single number summary of the data. 
Geometry suggests the solution; analytic geometry al- 
lows us to compute it. The solution portrayed in Figure 
9 indicates how we have decomposed z into two orthog- 
onal components: ZJ, the component along J, and 
e = z - TJ, the remainder or error. If all the Z'S were 
identical, z would lie on J exactly, and we would have 

1 e I 2  = 0. Thus we can think of ZJ as the part of z that can 
be satisfactorily explained by a constant. To the extent 
that e l 2  >0, this explanation is imperfect because 
the data vary. We interpret e as the variations in z. 
Thus z = constant component plus variations = 

rJ + (Z - ZJ). 
The corresponding decomposition of the squared 

lengths is found from the law of Pythagoras: 

1 z 1' = FJ 1 '  + 1 z - rJ 12, 

which reduces in this case to 
C z ,  ? =  nz'- + 2 (2, - z)', 

the usual decomposition of the sums of squares. 
How good a summary is Z? Various measures are 

used. From Criterion 2, either 6 or e 1 '  could be used. 
1 e 1' is often called the sum of squares error (SSE). (Can 

Figure 9. Derivation of the sample mean. 
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Figure 10. The simple correlation coefficient 

you find an interpretation of 6 in terms of classical 
statistical quantities?) A variation of 1 e 1' called the 
mean square for error (MSE) is often used (though not 
usually given this name in this situation). We expect I e 1' 
to depend on n-the more observations, the more vari- 
ation, at least in an absolute sense. To account for this, 
we may divide SSE by the dimension of the relevant 
subspace, obtaining an average error sum of squares 
"per dimension." Since e is restricted to lie in the 
(n - 1)-dimensional subspace orthogonal to J, we di- 
vide by (n - I) ,  obtaining: 

MSE = I e 12/(n - 1) = (n - I)- '  C (z, - s)*, 

the usual sample variance. Either SSE or MSE is a 
measure, then, of the extent to which the best single 
number summary T fails to summarize the data. Inci- 
dentally, the dimension of the subspace within which a 
vector is restricted to lie is often called the degrees of 
freedom associated with that vector. 

In situation (Q2) we must assess the strength of the 
relationship between two variables y and z. Using the 
same geometric interpretation of y and z as before, this 
means asking how close two vectors y and z are to each 
other (see Figure 10). By Criterion 2, we could measure 
this by ly - z I 2  or by some function of the angle be- 
tween y and z. In practice, however, (Q2) is interpreted 
to mean "how strongly are variations in y related to 
variations in z?" As in ( Q l ) ,  variations in y and z are 
taken to be their components orthogonal to J :  
y -YJ =y - Pj(y) and z - TJ = z - Pj(z) in Figure 10. 
The usual measure of the relationship of variations in y 
and z is cos (0) in Figure 10, usually called the (simple) 
correlation of y and z. When cos2 (0) = 1(0 = 0" or 180") 
variations in y are exactly proportional to variations in 
z: y -FJ and z - TJ are collinear. When cos (0) = 0 
(0 = 90") variations in y are unrelated to variations in z:  
y -YJ and z - TJ are orthogonal. 

The inner product of y -YJ and z - TJ, when divided 
by the appropriate degrees of freedom (n - I),  is the 
sample covariance of y and z. In a more general setting, 
if we first project y and z onto the plane L determined 
by J, w, x, . . . , then the cosine of the angle between 
y - PL(y ) and z - PL (2) is called the partial correlation 
of y and z, removing the effects of w, x . . . . Most cor- 
relation analyses have natural geometric interpreta- 

Figure 11. Regression. 

tions-the only twist is that attention is usually re-
stricted to the subspace orthogonal to J-the subspace 
of variation in the variables. 

In (Q3) we have an example of the more general 
linear (or regression) model, z = a + bx + cy + . . ., 
and as before we interpret z, x, and y, . . . , as vectors. 
The least squares criterion requires that we choose a, b, 
c, . . . , to minimize 1 z - a J  - bx - cy - . . . ' ,  and Cri- 
terion 1 gives the solution. If L = L (J, x, y, . . .) is the 
plane determined by J, x, y , . . . , then the best fitting 
linear function a J  + bx + cy + . . . is the projection 
PL (2) (see Figure 11). To measure the goodness of f i t ,  
Criterion 2 suggests we use either SSE = I z - PL (2) 1' or 
4, the angle between z and PL (z ) ,  or something similar. 

As in ( Q l )  and (Q2), we sometimes focus our atten- 
tion on the subspace orthogonal to J, the subspace of 
variations. In particular, the angle 0 between z - P,(z) 
and PL(z)  - Pj(z) is a measure of how much better the 
fi t  is using J, x, y, . . . in the model than it is using J 
alone (see Figure 12). When 0 = 0 (cos2(0)= I) ,  z is in 
L, and we have a perfect fit. When 0 = 90" 
(cos2 (0) = 0), the fit is no better than that obtained by 
using J alone. The quantity cos2 (0) is called the squared 
multiple correlation coefficient (R2) and may be inter- 
preted as is the simple correlation coefficient in (Q2). 
Note that from (T1)-(T7), PL(z)  - Pj(z) is the projec- 
tion of z - Pj(x) onto L. Both z - PL(z)  and 
PL (z) - Pj(z) are orthogonal to J. Thus cos2 (0) mea- 
sures the extent to which variations in z(z  - Pj(z)) may 
be expressed linearly by variations in x, y, . . . (mea-
sured by the nearest point, PL(z)  - P ~ ( z ) ,in that part of 
L orthogonal to J ) .  

Figure 12. Regression and the multiple correlation coefficient. 
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All three of our situations (and, indeed, many other 
situations of classical statistics), can be handled accord- 
ing to our geometric rules, Criteria 1 and 2. The solu- 
tions are inspired by geometric principles: The best fit 
is the projection; they are assessed by considering an 
angle or a length; they may be best calculated by using 
the analytic equivalents. 

5. PROBABILITY THEORY 

In Section 2 we mentioned that we can think of ran- 
dom variables as vectors. We pick up this theme again 
here. To think about random variables geometrically, 
we must identify the vectors and the inner product. 

The extension to this case (a potentially infinite di- 
mensional vector space) is technically involved. We em- 
phasize the geometric interpretation of the ideas and 
refer the reader to the references for technical detail. 

Suppose we have some random variables z, x, 
y ,  . . . that are jointly distributed with distribution func- 
tion F(z, x, y ,  . . .). The expected value of a random 
variable is computed as E(z)  = S z d ~ ( z ) ,where F (  ) 
denotes generically the distribution of the variables in- 
volved. Suppose our random variables have means 
E (z) = p.;, E ( x )  = p,, and so forth. These random vari- 
ables are our vectors. We add them, multiply them by 
constants (scalars), and so on in the conventional way. 
The quantity 

i 

satisfies (2.5), as one can verify by doing the calculus 
involved; we take it here as our definition of the inner 
product of two vectors (random variables) z and x. With 
this definition, many ideas from probability theory cor- 
respond to ordinary ideas in geometry. 

The constant 1 plays the same role here that J did in 
Section 4. For example, the projection of a random 
variable z on 1 must, by Properties A and B, satisfy 
P, (2) = a(1) for some a and (z - P, (z), 1) = 0, which 
reduce to E (z )  = a, SO that p, (1) = p, is the projection 
of z onto 1. The vector z - p., is the "centered" random 
variable. It plays the same role here as the variations 
z - f did in Section 4. 

For any random variable z, (z ,z)= E(z2)  is the 
squared length of z. The squared length of the corre- 
sponding centered random variable z - p., is given then 
by 1 z - p; = E(z  - p.,)' = crf, and this is called the 
variance of z. As in Section 3, the angle 8 between the 
centered vectors z - p, and x - p, plays an important 
role (see Figure 13): 

is easily shown to be the correlation between z and x. 
When we say in probability theory that 

var (z + X)= var (2) + var (x) + ~ C O V(z,x) 

we are just repeating the law of cosines (2.1). When two 
random variables are uncorrelated, it is the analog of 
the corresponding two vectors' being orthogonal, and 
so on. The geometric interpretations exactly parallel 

p z x  = cos (8) 

Figure 13. Random variables and correlation. 

those for statistics in Section 4. For probability, we in- 
terpret a theoretical model. For statistics, we interpret 
the data themselves. The geometry is the same for both. 

We considered above a specific case of projection- 
onto the constant 1. What is the general analog of 
projection in probability theory? One answer to this 
question is the conditional expectation. The expected 
value of z, given x, y ,  . . . , is E (z x, y,  . . .) and is 
similar to the projection of z onto the plane determined 
by x, y , . . . , in the following way. By the plane L (x, 
y ,  . . .), we mean roughly all square integrable functions 
of x, y ,  . . . . This space is closed under linear opera- 
tions, and we may think of it as a linear subspace. With- 
out dwelling on the technicalities here, note three prop- 
erties of conditional expectation that can be routinely 
verified from their definitions: 

If g is "any" function of x, y ,  . . . , then 

E(zg Ix, y ,  . . .) =gE(z  x ,  y,  . . .). (5.3) 

From (5.2) and (5.3) it follows that if g is "any" function 
of x, y ,  . . . , then 

The point of all this is that in terms of Section 3, (5.1) 
says that E (z I x, y ,  . . .) is in the plane L, while (5.4) 
says that z - E (z I x, y ,  . . .) is orthogonal to any vector 
g in L. These are exactly the defining conditions for the 
projection P L ( z )  In this sense, then, the conditional 
expectation is the analog of projection (see Figure 14). 
Equality in this discussion means equality almost 
surely, and there are many other technical points to 
consider. Loeve (1963) and Doob (1953) are appropri- 

O The American Statistician, February 1984, Vol. 38, No. I 46 



L=all functions of x,y, ... 

Figure 14. Conditional expectation. 

ate references. Our interest here is in what the geome- 
try suggests. 

One interpretation comes from the geometric idea 
that the projection gives the closest point in the plane to 
the vector z. If, for example, x, y, . . . represent our 
present knowledge and z represents a future value to be 
predicted, the analogy suggests that the projection is 
the function of our present knowledge (x, y, . . .), which 
comes closest to the future (2). Thus, to predict the 
future, use E(z  X, y, . . .)-it gives the minimum mean 
squared error (see Chs. 5 and 9 of Breiman 1969). 

Another theorem of probability theory is that 

var(z) = var [E  (z x, y, . . .)] 

+ E [var (z I x, y, . . . )]. (5.5) 

Note that since E[z - E(z  x, y, . . .)]= 0, we have 

var[z - E(z Ix,  y, . . .)I = E[z - E(z  Ix, y, . . . ) I 2 .  
Since the conditional variance is the variance relative to 
the conditional distribution, (5.2) further implies that 
this is also equal to E[var (z x,y, . . .)I. Thus (5.5) can 
be written as 

that is, the law of Pythagoras. 

6. COMMENTS 

Order 

I find the order given-geometry, analytic geometry, 
statistics, and probability-the most effective one, for it 
builds upon the ideas of a right angle and the law of 
Pythagoras, which most students remember, if only 
dimly. The probability can be omitted, although the 
expression of conditional expectation as a projection 
allows the statistical ("sample") ideas to be tied more 
neatly to their probabilistic (model) equivalents. 

Abstraction 

Mathematicians like to talk about how things behave, 
rather than what they are. Nonmathematicians often 

prefer the reverse. "Anything that behaves this way is a 
vector (because I said so)" is not a natural way of talking 
to the nonmathematician. Mathematicians ought to be 
more sensitive to this than they typically are. Repeating 
examples in different words, emphasizing the equiv- 
alence of the various means of expression rather than 
which expression came "first," is important. Once stu- 
dents understand the ideas expressed in some language, 
they will be more willing to study the logical paths be- 
tween them. 

The choice of words is important. "Point" and "line" 
should be used only for the common geometric ideas 
they convey. "Vector" seems as good as any term for 
the abstract notion. 

Extensions 

Sections 2 through 5 form a bare-bones outline of a 
course. Instructors may add material to it in many ways, 
depending on time, interest, and student background. 
For example: (a) When transferred into matrix form, 
Properties A and B lead directly to the normal equa- 
tions for linear models, without calculus. (b) Computer 
subroutines like those suggested by Beaton (1964) ex- 
tend the material naturally. Each routine performs a 
function that is a natural computational atom with nat- 
ural statistical and geometric interpretations as well. 
Such a combination is particularly effective when one is 
using interactive computer systems (see Schatzoff, 
Bryant, and Dempster 1975). (c) The more linear mod- 
els we discuss (ANOVA, multiple regression, etc.), the 
more benefits we obtain from the investment in under- 
standing the geometry. For example, to think of degrees 
of freedom as the dimension of an appropriate subspace 
will be a big intellectual leap for many, but once it is 
made, we no longer have to remember separate formu- 
las for many individual cases. As many different models 
can be introduced as seem relevant: Criteria 1 and 2 
apply to them all. Seber's (1966,1977) books are good 
starting points. (d) The probability ideas can be consid- 
erably expanded in the case of normal distributions (see 
Dempster 1968, Ch. 14 and Loeve 1963, Secs. 33-34). 
Note also that satisfactory courses can be put together 
using little or no probability theory, as the Dempster 
(1968) or Van de Geer (1971) books demonstrate. Such 
approaches focus attention on the basic statistical quan- 
tities and the methods of measuring them, without the 
mathematical overhead of probability theory. Robert 
Frost (1935) described writing free verse as "playing 
tennis with the net down," and I suppose some would 
describe statistics without probability in the same way. 
Yet avoiding probability until the statistical ideas are 
well established may be pedagogically useful. There is 
no need for a net until the players understand that the 
object of the game is to hit the ball back and forth. 

Further References 

In addition to the references mentioned thus far, 
Kendall(1961) is a useful reference for formulas. Other 
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applications are described in Haberman (1978) (log- 
linear models) and Koopmans (1974) (spectral analysis 
of time series). Of course, almost any text on multi- 
variate analysis makes at least a passing mention of the 
geometric interpretation of some quantities, but few 
exploit it systematically, and none, to my knowledge, 
do so at an elementary level. 

[Received February 1982. Revised August 1983. ] 
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