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Facultad de Ciencias
Universidad Nacional de Educación a Distancia
Paseo Senda del Rey 9, 28040-Madrid (Spain)
e-mail: agar-per@ccia.uned.es

Abstract: The t-distribution is a very usual distribution for several test statis-
tics because a normal distribution is frequently assumed as underlying model.
Even in some tests based on robust statistics, such as the test based on the
sample trimmed mean, a t-distribution is used as distribution for the standard-
ized sample trimmed mean if the underlying model is normal. Nevertheless,
it is necessary a deeper understanding of the behaviour of these kind of tests
and the computations of their key elements, such as the p-value and the criti-
cal value, with small samples, when the underlying model is close but different
from the normal distribution. In this paper we obtain good analytic approxima-
tions with small samples, of the p-value and the critical value of a t-test (i.e., a
test with a t-distribution for the test statistic under a normal model), studying
its behaviour when the underlying distribution is close but different from the
normal model. We conclude the paper studying some robustness properties of
t-tests.

Keywords and phrases: Robustness in hypotheses testing, von Mises ex-
pansion, tail area influence function, saddlepoint approximation, robustness of
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1.1 Introduction

Many classical parametric tests were obtained assuming a normal distribution
as underlying model. This is the reason why the χ2, Student’s t-, and F -
distributions play a prominent role in Statistics as distributions for test statis-
tics.

Also in some tests based on robust statistics, such as the test based on the
α-trimmed mean, a t-distribution is used as distribution for the standardized
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trimmed mean if the underlying model is normal, even with a small sample size;
see, for instance, Tukey and McLaughlin (1963), Staudte and Sheather (1990)
or Wilcox (1997). See also Patel et al. (1988).

Nevertheless, it is necessary a deeper understanding of the behaviour of these
kind of tests and the computations of their key elements, such as the p-value
and the critical value, with small samples, when the underlying distribution is
not normal but a slight deviation from it. Previous studies are, for instance,
Benjamini (1983), Cressie (1980), Chen and Loh (1990) or Sawilowsky and
Blair (1992). Really, the distribution of the Student’s statistic under other
models is usually obtained through simulations, except in the paper by Lee and
Gurland (1977) where this distribution is obtained only under contaminated
normal models.

Here we obtain good closed form approximations of some key elements of
a t-test, such as the critical value and the p-value, in a close to normal situ-
ation, developing a method proposed in Garćıa-Pérez (2003), which is based
on considering all these elements as functionals of the model distribution, and
that makes use of the von Mises expansion of a functional plus, in some cases,
saddlepoint approximations.

This method is specially useful in robustness studies where the model dis-
tribution is, frequently, a slight deviation from the normal distribution (for
instance, a contaminated normal) but complicated enough to render impossible
an exact calculation of these elements.

With these aims, in Section 2 we briefly explain the method that we will
use in the following sections.

We obtain, in Section 3, von Mises approximations for t-tests, (i.e., tests in
which the test statistic follows a t-distribution under a normal model), but now
when the model distribution is close to the normal distribution.

In Section 4 we obtain saddlepoint approximations of the von Mises approxi-
mations and some interesting results; for instance, a complementary result of the
obtained by Benjamini (1983) or the conclusions drawn by Cressie (1980), which
is that “a light-tailed parent distribution causes a heavy-tailed t-distribution”.
We also study the robustness of t-tests, obtaining some results that confirm the
idea that, also with small samples sizes, the t-test has robustness of validity, at
least in the tails, with slight departures from the normality.

1.2 Preliminaries

Although the method that we are going to explain in this paper can be extended
to a more general setting, we will consider in it a one-dimensional test based
on a test statistic Tn = Tn(X1, ...,Xn) that rejects the null hypothesis H0 when
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Tn is larger than the critical value kF
n and where F is the distribution that the

Xi’s follow under H0. If Tn = t, the p-value will be then the tail probability
pF

n = PF {Tn > t}.
In particular, we will consider t-tests in the paper, i.e., tests in which Tn

follows a t-distribution under a normal model, studying here its behaviour under
a model F , close but different, from the normal.

In these tests we will just consider two elements, the critical value kF
n

and the p-value pF
n , although the method can be used to approximate other

elements like the power. One of the key points is to consider these elements as
functionals of the model distribution F .

We will suppose that Tn is real valued although the sample X1, ...,Xn can
be one- or multi-dimensional. The only restriction is that, under the null hy-
pothesis, both the critical value kF

n and the p-value pF
n must be functionals of

only one distribution function F that we will assume univariate.
In a one-dimensional parametric test of the null hypothesis H0 : θ = θ0,

if X1, ...,Xn is a sample from a random variable X with distribution function
Fθ and Fn;θ is the cumulative distribution function of the test statistic Tn, the
critical value of the level-α test

kF
n = F−1

n;θ0
(1 − α)

and the p-value

pF
n = PFθ0

{Tn > t}
will be considered functionals of Fθ0 . (Throughout the paper, the inverse of any
distribution function G is defined, as usual, by G−1(s) = inf{y|G(y) ≥ s} , 0 <
s < 1.)

For instance, if Tn = M is the sample median, then

kF
n = F−1

θ0
(B−1(1 − α))

and

pF
n = 1 − B(Fθ0(t))

where B is the cumulative distribution function of a beta β( (n + 1)/2 , (n +
1)/2 ) .

If Tn = x is the sample mean and Fθ0 ≡ Φθ0,σ the normal distribution
N(θ0, σ), it is

kF
n =

1√
n

(
Φ−1

θ0,σ(1 − α) + θ0 (
√

n − 1)
)

and the p-value
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pF
n = 1 − Φθ0,σ

(
t
√

n − θ0(
√

n − 1)
)
.

The most common t-test is the based on the usual t-statistic

Tn =
√

n(x − θ0)
S

with a tn−1 distribution under a N(θ0, σ) model.
Besides, if k = [nα] is the integer portion of nα, another t-test is the stan-

dardized sample α-trimmed mean (removing the k largest and k smallest ob-
servations)

Tn =
(1 − 2α)

√
n(xα − µα,0)
Sw

with an approximate tn−2k−1 distribution under a normal model, where S2
w is

the sample Winsorized variance, if the null hypothesis is about the parameter
α-trimmed mean, H0 : µα = µα,0. See Tukey and McLaughlin (1963), Wilcox
(1997, p. 75), or Staudte and Sheather (1990, p. 105, 156, 186). See also the
paper by Patel et al. (1988).

Finally, let us observe that it does not matter that the functionals kF
n and pF

n

depend on n because we are not interested in the asymptotic (in n) distribution
properties of these functionals. Actually, n is in both of them what Reeds (1976,
p.39) calls an auxiliary parameter.

1.2.1 Influence functions of pF
n and kF

n

To obtain the von Mises expansions of the functionals pF
n and kF

n we will need
their influence functions with respect to a model G (that later we will assume
it to be the normal distribution).

We will represent these influence functions, respectively, as
•

pG
n and

•
kG

n ; they
will be based on the Tail Area Influence Function (TAIF) defined by Field and
Ronchetti (1985). This one is just the influence function of the tail probability
of a statistic Tn at a distribution G and it is defined as

TAIF(x; t;Tn, G) =
∂

∂ε
PGε{Tn > t}

∣∣∣∣
ε=0

for all x ∈ IR where the right hand side exists, being Gε := (1 − ε)G + εδx the
contaminated model, and δx the point mass distribution at x ∈ IR.

The TAIF is really the influence function of the p-value,

•
pG

n = TAIF(x; t;Tn, G)

and after some computations (see Garćıa-Pérez, 2003, for details) it is
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•
kG

n =
TAIF(x; kG

n ;Tn, G)
gn(kG

n )

assuming that the distribution function Gn of the test statistic, under the model
G, has a density gn with respect to the Lebesgue measure and that gn(kG

n ) �= 0.
Since, in this paper, the distribution G (called pivotal distribution in the

sequel) will be the normal distribution, we will have no problem about this

with
•

kG
n .

1.2.2 Von Mises expansions of pF
n and kF

n

Let T be a functional defined on a convex set F of distribution functions and
with range the set of the real numbers.

If F and G are two members of F and s ∈ [0, 1] is a real number, let us
define the function A of the real variable s by

A(s) = T ((1 − s)G + sF ) = T (G + s(F − G)) .

Considering the viewpoint adopted by Filippova (1961) and Reeds(1976),
the (low-brow way of the) von Mises expansion of the functional T is just the
ordinary Taylor expansion of the real function A(s), assuming that A satisfies
the usual conditions for a Taylor expansion to be valid if s ∈ [0, 1]; see, for
instance, Serfling (1980, p. 43, theorem 1.12.1A).

Then, expanding A(s) about s = 0 and evaluating the resultant expansion at
s = 1, we obtain the von Mises expansion of the functional T at the distribution
F ∈ F

T (F ) = T (G) +
m∑

k=1

Ak)(0)
k!

+ Rem (1.1)

where Ak)(0) is the ordinary kth derivative of A at the point 0,

Ak)(0) =
dk

dtk
A(t)

∣∣∣∣∣
t=0

k = 1, ...,m

and where the remainder term Rem depends on F and G, and on the (m+1)th
derivative of A (i.e., on the influence function of T , if there exists).

Considering the sum in (1.1) up to the first or second term, we have, re-
spectively, the first-order von Mises expansion

T (F ) = T (G) + A1)(0) + Rem1

and the second-order von Mises expansion
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T (F ) = T (G) + A1)(0) +
1
2

A2)(0) + Rem2

of T , having the second one a higher degree of accuracy than the first one.
Because we will obtain very accurate approximations just considering the first-
order expansion, we will always consider this one in the rest of the paper,
omitting in the sequel the subscript of the remainder term.

Moreover, if there exists the influence function of the functional T , usually
represented by

•
T (x) or just by IF (x;T,G), it is

T (F ) = T (G) +
∫

IF (x;T,G) dF (x) + Rem

being the remainder term

Rem =
1
2

∫ ∫
TH(x, y) dF (x)dF (y)

where

TH(x, y) =
∂

∂ε
IF (x;T,Hε,y)

∣∣∣∣
ε=0

+ IF (y;T,H)

and H(x) = G(x) + λ(F (x) − G(x)) with λ some constant in [0, 1] depending
on F,G, T , and Hε,y = (1 − ε)H + ε δy the H-contaminated distribution. (See
Garćıa-Pérez, 2003, for more details.)

Then, if there exists
•

pG
n , the (first-order) von Mises expansion of the p-value

will be

pF
n = pG

n +
∫ •

pG
n (x) dF (x) + Rem

and, if there exists
•

kG
n , the (first-order) von Mises expansion of the critical value

will be

kF
n = kG

n +
∫ •

kG
n (x) dF (x) + Rem

where the remainder terms, usually different in both expansions, will be smaller
as F and G are closer. This can be formalized with the usual sup-norm or with
a tail ordering on distributions like the <t-ordering defined by Loh (1984).

1.2.3 Von Mises approximations of pF
n and kF

n with a model F
close to the normal distribution

From the previous von Mises expansions we define the approximations we were
looking for, using the normal distribution Φµ,σ, as distribution G.
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So, we define the (first-order) von Mises (VOM) approximation of pF
n by pΦ

n

as

pF
n � pΦ

n +
∫

TAIF(x; t;Tn,Φµ,σ) dF (x) (1.2)

and the (first-order) von Mises (VOM) approximation of kF
n by kΦ

n as

kF
n � kΦ

n +
1

φn(kΦ
n )

∫
TAIF(x; kΦ

n ;Tn,Φµ,σ) dF (x) (1.3)

where φn is the density of Tn under the normal model Φµ,σ.
In these equations we see explicitly the extra term that we add to the usual

asymptotic normal approximations pΦ
n and kΦ

n , that improve them.
To simplify the notation we will usually omit the parameters of the normal

distribution when it appears as subscript or superscript. We will represent the
distribution and density functions of the standard normal N(0, 1), respectively,
by Φs and φs.

1.3 Von Mises Approximations For t-Tests

In this section we will consider t-tests, i.e., tests such that the test statistic Tn

follows a t-distribution under the null hypothesis, when the underlying model is
the normal distribution N(µ, σ). Here we will determine the VOM approxima-
tions (1.2) and (1.3), for their p-value and critical value, when the underlying
model distribution F is not normal but a slight deviation from it.

The key element in the VOM approximations (1.2) and (1.3) is the TAIF
under the normal model. To obtain this, we express first the tail probability
of a t-test as a functional of the cumulative distribution function Φµ,σ of the
normal distribution N(µ, σ).

If the test statistic Tn follows a t-distribution with n degrees of freedom, tn,
we can express the tail probability of Tn as

PΦ{Tn > t} =
1
2

∫ ∞

−∞
PΦ

{
χ2

n ≤ n(y − µ)2

t2σ2

}
dΦµ,σ(y)

where χ2
n is a random variable with a χ2

n distribution.
Therefore, under the contaminated model Φε = (1− ε)Φµ,σ + ε δx , we have

PΦε{Tn > t} =
1
2

(
(1 − ε)

∫ ∞

−∞

[
1 − PΦε

{
χ2

n >
n(y − µ)2

t2σ2

}]
dΦµ,σ(y)
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+ε

[
1 − PΦε

{
χ2

n >
n(x − µ)2

t2σ2

}])
.

Now, we express the TAIF(x; t; tn,Φµ,σ) in terms of the TAIF of the χ2,
TAIF(x; t;χ2

n,Φµ,σ) as

TAIF(x; t; tn,Φµ,σ) =
∂

∂ε
PΦε{Tn > t}

∣∣∣∣
ε=0

=
1
2

(
−
∫ ∞

−∞
P

{
χ2

n ≤ n(y − µ)2

t2σ2

}
dΦµ,σ(y)

−
∫ ∞

−∞
TAIF(x;

n(y − µ)2

t2σ2
;χ2

n,Φµ,σ) dΦµ,σ(y)

+P

{
χ2

n ≤ n(x − µ)2

t2σ2

})
.

In Garćıa-Pérez (2004) we obtained that the TAIF, under a normal model,
of the functional χ2

n test considered is, if n > 1,

TAIF(x; t;χ2
n,Φµ,σ) = n P

{
χ2

n−1 > t −
(

x − µ

σ

)2
}
− n P{χ2

n > t}.

Then, if n > 1, the TAIF under a normal model, of the functional t-test
considered is

TAIF(x; t; tn,Φµ,σ) =
n

2
− (n + 1)P{tn > t} +

1
2

P

{
χ2

n ≤ n(x − µ)2

t2σ2

}

−n

2

∫ ∞

−∞
P

{
χ2

n−1 >
n(y − µ)2

t2σ2
− (x − µ)2

σ2

}
dΦµ,σ(y).

Because in Garćıa-Pérez (2004) we also obtained that it is

∫ ∞

−∞
P

{
χ2

n−1 > t − (x − µ)2

σ2

}
dΦµ,σ(x) = P{χ2

n > t}

it is easy to check out that it is
∫ ∞

−∞
TAIF(x; t; tn,Φµ,σ) dΦµ,σ(x) = 0.
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Finally, to obtain the VOM approximation of the p-value pF
n and the critical

value kF
n when the model distribution for the observable random variable is

F , we have to integrate the last TAIF with respect to F , as it is showed in
expressions (1.2) and (1.3), obtaining that

pF
n � n

2
− n P{tn > t} +

1
2

∫ ∞

−∞
P

{
χ2

n ≤ n(x − µ)2

t2σ2

}
dF (x)

−n

2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

n−1 >
n(y − µ)2

t2σ2
− (x − µ)2

σ2

}
dΦµ,σ(y) dF (x)

(1.4)

and

kF
n � tn;α +

1
gtn(tn;α)

[
n

2
− (n + 1)α +

1
2

∫ ∞

−∞
P

{
χ2

n ≤ n(x − µ)2

t2n;α σ2

}
dF (x)

−n

2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

n−1 >
n(y − µ)2

t2n;α σ2
− (x − µ)2

σ2

}
dΦµ,σ(y) dF (x)

]
(1.5)

where tn;α is the (1−α)-quantile of a tn distribution and gtn the density function
of this distribution.

Example 1.3.1 (t-tests under a scale contaminated normal model) If we
suppose a sample from a scale contaminated normal model F = (1−ε)N(µ, σ)+
εN(µ, k σ), the VOM p-value (1.4) and VOM critical value (1.5) of a tn test
are, respectively,

pF
n � P{tn > t} + ε

[
n

2
− (1 + n)P{tn > t} + P{tn > t/k}

−n

2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

n−1 >
n(y − µ)2

t2σ2
− (x − µ)2

σ2

}
dΦµ,σ(y) dΦµ,kσ(x)

]

and

kF
n � tn;α +

ε

gtn(tn;α)

[
n

2
− (1 + n)α + P{tn > tn;α/k}

−n

2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

n−1 >
n(y − µ)2

t2n;ασ2
− (x − µ)2

σ2

}
dΦµ,σ(y) dΦµ,kσ(x)

]
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Table 1.1: Exact and approximate p-values under a contaminated normal model
and n = 4

t “exact” VOM
1 0′1979 0′1979
2 0′0688 0′0716
4 0′0138 0′0158
5 0′0071 0′0089

We see in these two expressions the extra term we add to the usual p-value
and critical value of a t-test under a normal model, and the influence of each
element (ε, n, k, ...) in these extra terms.

To finish the example with numerical values, let us consider, for instance, a
sample of size 4 from a distribution 0′95N(0, 1) + 0′05N(0,

√
4) instead of a

N(0, 1), and the usual Student’s test statistic

√
4x

S

that follows a t3 distribution, to test at level α, H0 : µ = 0 against H1 : µ > 0.
The approximated p-value and critical value are, respectively,

pF
n � P{t3 > t} + 0′05

[
3
2
− 4P{t3 > t} + P{t3 > t/2}

−3
2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

2 >
3 y2

t2
− x2

}
dΦ0,1(y) dΦ0,2(x)

]

and

kF
n � t3;α +

0′05
gt3(t3;α)

[
3
2
− 4α + P{t3 > t3;α/2}

−3
2

∫ ∞

−∞

∫ ∞

−∞
P

{
χ2

2 >
3 y2

t23;α
− x2

}
dΦ0,1(y) dΦ0,2(x)

]

In Tables 1.1 and 1.2, appear the exact values (obtained through simulation
of a 30000 samples and using the package ‘stepfun’ of the software R in differ-
ent t’s) and the (first-order) VOM approximations in this situation (using the
package ‘adapt’ of R for the numerical integration).
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Table 1.2: Exact and approximate critical values under a contaminated normal
model and n = 4

α “exact” VOM
0′01 4′445 4′718
0′05 2′330 2′378
0′1 1′629 1′631

Nevertheless, to obtain these results we had to compute the approximations
using numerical integration. Usually we would prefer to have analytic expres-
sions for them that can be used as elements in other more complex problems;
for instance, to study the robustness of the t-tests. For this reason we will
obtain saddlepoint approximations of these (first-order) VOM approximations
in the next section.

1.4 Saddlepoint approximations for t-tests

Although it is possible to use known saddlepoint approximations for the tails
of the χ2 and t-distributions that appear in expressions (1.4) and (1.5) —see,
for instance, Jensen (1995, p. 49, 86)—, these ones would be numerical again,
or would depend on integrals of the normal cumulative distribution function
with respect to the underlying model F , not obtaining, in this way, manageable
analytic expressions of them. For this reason we will approximate the TAIF,
using the Lugannani and Rice formula, before integration in (1.2) and (1.3).

If Tn follows a tn distribution, and Y1, Y2 are two independent gamma dis-
tributions, respectively γ(1/2, 1/2) and γ(n/2, n/2), we can write

P{Tn > t} = P{Y1 − t2Y2 > 0}
where the random variable Y = Y1 − t2Y2 has cumulant generating function

K(θ) = log M(θ) = log Mγ(θ) + n log Mγ(−θt2/n)

being

Mγ(θ) =
∫ ∞

−∞
eθ (u−µ)2/σ2

dΦµ,σ(u)

the moment generating function of a gamma γ(1/2, 1/2), a functional that
depends on the distribution model Φµ,σ.

Now, we can use the Lugannani and Rice formula —see Lugannani and
Rice (1980) or, better, Daniels (1983)—, for the tail, in a sample of size one, of
Y = Y1 − t2Y2, obtaining that it is



12 A. Garćıa-Pérez

PΦ{Y > 0} = 1 − Φs(w) + φs(w)
{

1
r
− 1

w
+ O(1)

}
(1.6)

where the functionals r and w are

w = sign(z0)
√
−2K(z0)

r = z0

√
K ′′(z0)

that depend on the saddlepoint z0, which is the solution of the equation

K ′(z0) = 0

from where we obtain the saddlepoint

z0 =
t2 − 1
2 t2

n

1 + n
.

Now, from (1.6), we obtain

TAIF (x; t; tn,Φµ,σ) =
∂

∂ε
PΦε {Y > 0}

∣∣∣∣
ε=0

� φs(w)
r

{
−w

•
w −

•
r

r
+

•
w r

w2

}

=
eK

√
2π z0

√
K ′′


 •

K

[
1 − z0

√
K ′′

(−2K)3/2

]
−

•
z0

z0
−

•
K ′′

2K ′′




After some computations and approximations, and if it is

A1 =
t√

π (t2 − 1)
e−(t2−1)/2

and

A2 = 1 − t2 − 1√
2(t2 − 1 − 2 log t)3/2

we obtain ∀x and t > 1 for the functional t-test considered, that it is

TAIF (x; t; tn,Φµ,σ) = A1

{(
A2 − 3t2 + 1

4(t2 − 1)

)
t−1 e(t2−1)(x−µ)2/(2t2σ2)
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+
3t2 − 1

2(t2 − 1)
t−3

(
x − µ

σ

)2

e(t2−1)(x−µ)2/(2t2σ2)

− t−5

4

(
x − µ

σ

)4

e(t2−1)(x−µ)2/(2t2σ2)

− t2

t2 − 1

(
x − µ

σ

)2

+
t2

t2 − 1
− A2

}
.

(It is easy to check out that it is
∫ ∞

−∞
TAIF (x; t; tn,Φµ,σ) dΦµ,σ(x) = 0 ).

Now, integrating this TAIF with respect to a model F , from (1.2) we obtain
the VOM+SAD approximate p-value of the test, under a model F ,

pF
n � P{tn > t} +

∫
TAIF(x; t; tn,Φµ,σ) dF (x). (1.7)

From (1.3), we obtain that the VOM+SAD approximate critical value of the
test, under a model F , is

kF
n � tn;α +

1
gtn(tn;α)

∫
TAIF(x; tn;α; tn,Φµ,σ) dF (x) (1.8)

where tn;α is the (1 − α)-quantile of a tn distribution with density gtn .

Example 1.4.1 (t-tests under scale contaminated normal models) Let
us consider a t-test, i.e., a test in which the test statistic follows a tn dis-
tribution under a normal model N(0, 1). Now, let us consider as model for
this test, a scale contaminated normal model F = (1 − ε)N(0, 1) + εN(0, k) ≡
(1 − ε)Φs + εΦ0,k.

Because, if t > 1 and a = 0, 2, or 4, it is

∫ ∞

−∞
xa e(t2−1)x2/(2t2) dΦ0,k(x) =

2a/2 Γ((a + 1)/2) ta+1 ka

√
π [t2 − k2(t2 − 1)](a+1)/2

if k <
√

1/(1 − t−2), the VOM+SAD p-value (1.7) is

pF
n � P{tn > t} + εA1

{(
A2 − 3t2 + 1

4(t2 − 1)

)
[t2 − k2(t2 − 1)]−1/2

+
3t2 − 1
t2 − 1

k2

2
[t2 − k2(t2 − 1)]−3/2 − 3 k4

4
[t2 − k2(t2 − 1)]−5/2

+
t2(1 − k2)

t2 − 1
− A2

}
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Table 1.3: Exact and approximate p-values under a scale contaminated normal
model, and standard p-values. n = 10

t “exact” VOM+SAD P{t9 > t}
1′5 0′08533 0′09908 0′08393
2 0′03787 0′03978 0′03828
3 0′00760 0′00749 0′00748

and the VOM+SAD critical value (1.8),

kF
n � tn;α +

εA1

gtn(tn;α)

{(
A2 −

3t2n;α + 1
4(t2n;α − 1)

)
[t2n;α − k2(t2n;α − 1)]−1/2

+
3t2n;α − 1
t2n;α − 1

k2

2
[t2n;α − k2(t2n;α − 1)]−3/2 − 3 k4

4
[t2n;α − k2(t2n;α − 1)]−5/2

+
t2n;α(1 − k2)

t2n;α − 1
− A2

}

where, as before, tn;α is the (1 − α)-quantile of a tn distribution with density
gtn .

Now, if we consider a scale contaminated normal model 0′95N(0, 1)+
0′05N(0, 0′6) (a situation with inliers), a sample of size n = 10 and the usual
Student’s test statistic

√
n x

S

that follows a t9 distribution under a normal model, to test at level α, H0 : µ = 0
against H1 : µ > 0, the VOM+SAD p-values and critical values are shown in
Tables 1.3 and 1.4 together with the exact ones (obtained with a simulation
of 30000 samples and using the package ‘stepfun’ of R), and the usual values
obtained under a standard normal model N(0, 1).

From these tables we observe that the VOM+SAD approximations are quite
good and, comparing these ones with the last column (values under a normal
model) we see that, for most of the values, using a light-tailed model we obtain
a long-tailed distribution for the test statistic.

Remark 1.4.1 One of the questions related with the behaviour of t-tests is if
they are conservative or liberal with long-tailed and short-tailed distributions,
i.e. that, if it is F >t G, with >t a (partial) ordering of distribution functions
then, is it PG{tn > t} ≥ PF {tn > t} ?
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Table 1.4: Exact and approximate critical values under a scale contaminated
normal model, and standard critical values. n = 10

α “exact” VOM+SAD t9;α
0′01 2′82284 2′82323 2′82144
0′05 1′84097 1′87263 1′83311
0′1 1′39572 1′58127 1′38303

Table 1.5: Actual sizes of the one-sample t-test when sampling from two scale
contaminated normal models. n = 3

Nominal level of
significance (α) 0′98N(0, 1) + 0′02N(0, 0′6) 0′95N(0, 1) + 0′05N(0, 0′6)

0′01 0′00999 0′00999
0′05 0′05013 0′05031
0′1 0′10306 0′10764

A complete answer to this question depends on the integrals of the TAIF
with respect to the distribution model through expression (1.7). Thanks to
the previous example we obtain a solution inside the class of scale contami-
nated normal models, complementary of the conclusion drawn by Benjamini
(1983), which is that “a light-tailed parent distribution causes a heavy-tailed
t-distribution”. Namely,

If we consider two distributions Fk1 = (1 − ε)Φs + εΦ0,k1 and Fk2 =
(1 − ε)Φs + εΦ0,k2 where 0 < k1 < k2 < 1, (i.e., Fk2 >t Fk1 with respect, for
instance, to the tail ordering defined by Loh, 1984) it is

PFk1
{tn > t} ≥ PFk2

{tn > t}
at least if the critical value t is 1 < t ≤ 1.747.

Remark 1.4.2 From Table 1.3 we can see that the size of the test does not
change very much with a distribution 0′95N(0, 1) + 0′05N(0, 0′6) considering
a t9-distribution. In Tables 1.5 and 1.6 we obtain the same conclusions with a
t3- and a t5-distributions, respectively.

From these computations we can state that, with small samples, the t-test
has robustness of validity for small departures from a Gaussian population,
at least in the tails. Nevertheless, this is not, probably, the most common
situation we meet in the real life. Sawilowsky and Blair (1992) agree with both
conclusions.
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Table 1.6: Actual sizes of the one-sample t-test when sampling from two scale
contaminated normal models. n = 5

Nominal level of
significance (α) 0′98N(0, 1) + 0′02N(0, 0′6) 0′95N(0, 1) + 0′05N(0, 0′6)

0′01 0′00999 0′00999
0′05 0′05056 0′05141
0′1 0′10689 0′11723

Table 1.7: Actual sizes of the one-sample t-test when sampling from location
contaminated normal models. n = 3

Nominal level of 0′98N(0, 1)+ 0′95N(0, 1)+ 0′9N(0, 1)+
significance (α) 0′02N(∓0′5, 1) 0′05N(∓0′5, 1) 0′1N(∓0′5, 1)

0′01 0′00999 0′00997 0′00995
0′05 0′04978 0′04945 0′04890
0′1 0′09862 0′09655 0′09310

Example 1.4.2 (t-tests under location contaminated normal models)
If we suppose a sample from a location contaminated normal model F = (1 −
ε)N(0, 1) + εN(µ, 1), the VOM+SAD p-value of a tn test is

pF
n � P{tn > t} + εA1

{(
eµ2(t2−1)/2 − 1

)(
A2 +

t2µ2

t2 − 1

)
− eµ2(t2−1)/2 µ4t4

4

}
.

(There is no problem to compute the critical value or to consider others more
general location contaminated normal models, or even location-scale contami-
nated normal models).

Remark 1.4.3 From Table 1.7 we obtain, for location contaminated normal
models, the same conclusions than before in the sense that, with small samples,
the t-test has robustness of validity, at least in the tails, for small departures
from a Gaussian population.
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