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Abstract: A common problem in geostatistics is variogram estimation, in order to 
choose an acceptable model for kriging. Nevertheless, there is no standard method, 
first, to test if a particular model can be accepted as valid and, second, to choose 
among several competing variogram models. The problem is even more complex 
if, in addition, there are outliers in the data. In this paper we propose to use the 
distribution of some classical and robust variogram estimators to test, first, the validity 
of a particular model, accepting it if the p-value of the test, with this particular model 
as null hypothesis, is large enough and, second, to compare several competing models, 
choosing the model with the largest p-value among several acceptable models.  
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1 Introduction 
 
A common problem in geostatistics is variogram model selection among several 
competing models, after the variogram has been estimated, usually by weighted 
least squares. 
Among all the models that apparently fit well, you might choose from among 
them the one with smallest residual sum of squares, or smallest mean square, or the 
usual Matheron’s estimator [8]. 
Sometimes, the chosen model is the one with smallest Akaike’s information criterion 
(AIC) [1] 
 
AIC = −2 log(maximized likelihood) + 2 p 
 

being p the number of parameters of the model. 

https://link.springer.com/book/10.1007/978-3-031-04137-2
https://link.springer.com/book/10.1007/978-3-031-04137-2
https://link.springer.com/chapter/10.1007/978-3-031-04137-2_3
https://link.springer.com/chapter/10.1007/978-3-031-04137-2_3
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AIC is usually estimated by

̂AIC = {n log(2π/n) + n + 2} + n log R + 2p

where n is the number of points on the variogram, and R is the mean of the squared
residuals between observed values and the fitted model (Webster and Oliver [13], p.
105).

Because the first term is constant, the model with the smallest n log R + 2p is
chosen.

Combining both criteria, the model with the smallest mean squared residual and
the smallest n log R + 2p is, usually, the selected model.

But the chosen model might not be significant enough because there is no proba-
bility distribution to compare with.

In this sense, Webster and McBratney [11] propose an F test for nested models,
and suggest other possible criteria.

In this context, equations for estimating the estimation variances for variograms
(with a bounded sill) are given in Matheron [9] and in Muñoz-Pardo [10], solving
them by numerical integration. Also, Webster and Oliver [12] obtain confidence
limits by Monte Carlo methods.

These results are valid considering only classical estimators and observations with
a normalmodel distribution. The paper byGorsich andGenton [6] has these purposes
from a nonparametric point of view.

In García-Pérez [3] approximated distributions, under a contaminated normal
model, for classical and robust variogram estimators are obtained. The aim of this
paper is to use these approximations for the distributions of theMatheron’s estimator
and some robust ones, first, to valid a particular variogram model and, then, to
compare among several competing variogram models.

2 Robust Estimators of the Variogram

Let us suppose that an univariate random variable Z is observed at some known fixed
locations si ∈ D, being D a fixed subset of R

d , d ≥ 1, and let us assume that the
variable Z satisfies the intrinsic stationarity property, i.e., the differences have zero
mean

E[Z(s + h) − Z(s)] = 0, ∀s, s + h ∈ D

and the variance depends only on lag h,

V (Z(s + h) − Z(s)) = 2 γ (h), ∀s, s + h ∈ D,

being the function
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2 γ (h) = V (Z(s + h) − Z(s)) = E[(Z(s) − Z(s + h))2]

the variogram. This is estimated with the classical Matheron’s estimator,

2γ̂M(h) = 1

Nh

Nh∑

i=1

(Zi+h − Zi )
2

where the sample size n = Nh is the cardinality of N (h) = {(si , s j ) : si − s j = h}.
In García-Pérez [3] some robust estimators of the variogram were introduced.

If we transform the original observations Zi by Yi = (Zi+h − Zi )
2, robust M-

estimators Tn of the variogram can be obtained as solutions of the equation

n∑

i=1

ψ(Yi , Tn) = 0.

If a linearized variogram can be accepted, the transformed variables Yi can be
considered as independent.

If we assume a scale contaminated normal model,

F = (1 − ε) N (μ, σ ) + ε N (μ, gσ)

with ε ∈ (0, 1) (usually small) and g > 1, for themarginal distributions of the original
observations Zi , that means a distribution F = (1 − ε) 2 γ (h) χ2

1 + ε g2 2 γ (h) χ2
1

for the transformed observations Yi , in García-Pérez [3] it is proved that a saddlepoint
approximation (VOM+SAD) for the distribution of Tn is

PF {Tn > t} � PG{Tn > t} + ε
φ(s)

r1

√
n

(∫
ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

− 1

)
(1)

beingG = 2γ (h)χ2
1 , H = g22γ (h)χ2

1 , φ the density function of the standard normal
distribution, s and r1 are the functionals

s = √−2nK (z0, t), r1 = z0
√
K ′′(z0, t)

K (λ, t) the function

K (λ, t) = log
∫ ∞

−∞
eλψ(y,t) dG(y)

K ′′(λ, t) (K ′(λ, t)) the second (the first) partial derivative of K (λ, t) with respect to
the first variable and z0 the saddlepoint, i.e., the solution of the saddlepoint equation

K ′(z0, t) =
∫ ∞

−∞
ez0ψ(y,t) ψ(y, t) dG(y) = 0.
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Approximation (1) is easy to compute with R for the Matheron’s estimator and
for robust M-estimators, as it is explained in García-Pérez [3]. In that paper, an
α-trimmed variogram estimator is also introduced and its VOM+SAD distribution,
obtained.

3 Acceptance of a Model and Variogram Model
Comparison

TheVOM+SADapproximations obtained inGarcía-Pérez [3] for classical and robust
variogram estimators, can be used to test if a particular variogrammodel 2γ (h) can be
accepted to explain a variogram estimator Tn = 2γ̂ (h) and also, to compare several
variogram models.

Let us assumemodel 2γ (h) as null hypothesis and 2γ̂ (h) as a variogram estimator.
We consider the test statistic

Sn = sup
h

∥∥2γ̂ (h) − 2γ (h)
∥∥ = max

1≤||h||≤k

∥∥2γ̂ (h) − 2γ (h)
∥∥

taking values sn , assuming there are k lags.
If the p-value of this test,

P{Sn > sn}

is large enough, the model will be accepted; otherwise the model will be rejected.
If several competing models are accepted, the model for which this p-value is the

largest, will be the selected one.
In García-Pérez [3], it is obtained that the cumulative distribution function of Sn

FSn (sn) = 1 − P{Sn > sn}

is

FSn (sn) =
k∏

||h||=1

[
P2γ (h){2γ̂ (h) > −sn + 2γ (h)} − P2γ (h){2γ̂ (h) > sn + 2γ (h)}]

being this tail probabilities computed with the VOM+SAD approximations.

4 Example

Let us consider log Calcium data (mg/l), one of the eight variables observed in the
groundwater data analysis around the city of Madrakah, a town located in the Wadi
Usfan region in western Saudi Arabia, (Marko et al. [7]). In Cabrero-Ortega and
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Fig. 1 Matheron’s estimator and a Spherical model
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Fig. 2 Matheron’s estimator and a Cardinal Sine model

García-Pérez ([2], pp. 303–310), a classical methodology is applied to these data,
concluding that an Spherical model with partial sill = 0.1564478, nugget = 0 and
range = 0.007289068 is suitable, see Fig. 1. We also observe Matheron’s estimations
for several lags in this figure and some outliers, appreciating that these estimates
seem to be affected by them.

In García-Pérez [3], we define robust estimates for these data and we also prove
that the linearized versions of the variogram models (classical, 0.05-trimmed and
Huber) can be accepted. Hence, we can consider the transformed observations Yi as
independent. We also obtain the VOM+SAD approximations for their distributions.

But let us observe that, in Cabrero-Ortega and García-Pérez [2], we also mention
that a Cardinal Sine model with partial sill = 0.11533833, nugget = 0.03038008 and
range = 0.005372508, can also be accepted for these data, as we see in Fig. 2.

We check now if both models have p-values large enough to be accepted and
which one is the largest. The p-values for the Spherical model, computed with the
VOM+SAD approximations are included in the middle-hand of Table1. In the right-
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Table 1 P-values for the Spherical model (middle) and Cardinal Sine model (right), considering
the classical Matheron’s estimator and two robust ones

Estimator\Model Spherical model Cardinal Sine model

Classical 0.2270516 0.0001244

0.05-trimmed 0.1333519 0.0862922

Huber 0.0157108 0.1036955

handof the tablewe show the p-values for theCardinal Sinemodel. The computations
are in the Supplementary Material available on the website

https://www2.uned.es/pea-metodos-estadisticos-aplicados/VariogramSelection.
htm

Although both models are accepted using the standard criteria, from this table
we see that Cardinal Sine model cannot be accepted considering the distribution of
Matheron’s estimator and that Spherical model can be accepted.

Nevertheless, if we use robust methods, the conclusion is the opposite one because
of the outliers in the data: first, with the 0.05-trimmed variogram estimator both
models are acceptable but, because of the asymmetry, it is better to use Huber’s
estimator with which we conclude that Cardinal Sine model should be the selected
one.

5 Conclusions and Future Works

The selection of a valid variogram model is a key question in geostatistics. In this
paper we propose to establish a test to do this, in which the null hypothesis is the
suggested variogram model, which is accepted if the p-value is large enough.

If several model are valid, we propose to chose the model with the largest p-value.
This proposal is especially useful when there are outliers in the data set because

robust variogram estimators can be used in the proposal.
This test is performed with the VOM+SAD approximations to the distribution of

the classical a robust variogram estimators obtained in García-Pérez [3].
These ideas can be extended to the multivariate situation through the cross-

variogram, following the results obtained in García-Pérez [4] and, even, to the spatio-
temporal framework, with the results developed in García-Pérez [5].
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