
Trimmed spatio-temporal variogram estimator 
Alfonso García-Pérez 

 
Versión final publicada en  Advances in Intelligent Systems and Computing. Bulding 
Bridges between Soft and Statisical Methodologies for Data Sciencies, Editores: L.A. 

García-Escudero, A. Gordaliza, A. Mayo, M.A. Lubiano Gómez, M.A. Gil, P. 
Grzegorzewski y O. Hryniewicz, Editorial Springer-Verlag, 2023:174-179. 

 https://link.springer.com/chapter/10.1007/978-3-031-15509-3_23 

 
Departamento de Estadística, I.O. y C.N., Universidad Nacional de Educación a Distancia (UNED), 

Paseo Senda del Rey 9, 28040 Madrid, Spain; agar-per@ccia.uned.es 

Abstract: The spatio-temporal variogram is the key element in spatiotemporal prediction based on 
kriging, but the classical estimator of this parameter is very sensitive to outliers. In this contributed 
paper we propose a trimmed estimator of the spatio-temporal variogram as a robust estimator. We 
obtain an accurate approximation of its distribution with small samples sizes and a scale contaminated 
normal model.We conclude with an example with real data. 
 
 
1 Introduction 
Let us suppose that we have a spatio-temporal random field Z(s, t), (s, t) ∈ D × T, where D 

⊂ Rd  and T ⊂ R, which is intrinsically stationary in space and time, i.e., with zero mean in 
their increments in space and time, and with variance that depends only on displacements 
in space and differences in time. 
The parameter in which we are interested in this paper is the spatio-temporal variogram of 
Z, defined as 
2 γz(h; τ) = var(Z(s + h; t + τ ) － Z(s; t)) 
where var is the variance of Z, h a spatial lag and τ a temporal lag. Furthermore, we shall 
assume that Z is spatially isotropic, i.e., that the variogram depends on the spatial lag h only 
through the Euclidean norm ||h||. 
To estimate 2 γz(h; τ ), we shall consider observations Zu, u = 1, ..., n, of Z(s, t) at spatial 
locations {si : i = 1, ...,m} and time moments {tj : j =1, ..., T}, where n = m ・ T is the sample 
size.  The spatio-temporal variogram is usually estimated with the classical method-of-
moments estimator, also called empirical spatio-temporal variogram, (Wikle et al. 2019; 
Varouchakis and Hristopulos 2019; Cressie 1993), 2 _γz(h; τ) , where Ns(h) refers to the set 
containing all pairs of spatial locations with spatial lag h and Nt(τ ) refers to the set 
containing all pairs of time points with time lag τ . Also, |N(・)| will refer to the number of 
elements in the set N(・). 
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Let us observe that this estimator is a sample mean of n(h, τ) = |Ns(h)| ·
|Nt(τ)| terms and therefore, very sensitive to outliers.

In Garćıa-Pérez (2020) robust estimators of the spatial variogram and accu-
rate approximations for their distributions were obtained. In Garćıa-Pérez (2021)
these results were extended to the multivariate case with robust estimators
for the cross-variogram. In Garćıa-Pérez (2022b) the temporal component was
included, obtaining robust M -estimators of the spatio-temporal variogram. In
this paper we propose, in Sect. 2, α-trimmed estimators of the spatio-temporal
variogram. In Sect. 3 we obtain accurate approximations for the distribution
of these new estimators. We conclude the paper, in Sect. 4, with a real-world
application.

2 α-Trimmed Spatio-Temporal Variogram Estimator

All over the paper we shall assume that the observations come from a scale
contaminated normal model (Huber and Ronchetti 2009, p. 2).

(1 − ε)N(μ, σ2) + εN(μ, g2σ2)

ε ∈ (0, 1) and g > 1. This class of distributions is considered the usual model
class in robustness studies because it establishes a neighborhood of the standard
model distribution, the contamination neighborhood, within which the underlying
model lies (Huber and Ronchetti 2009, p. 12).

Let us consider the transformation Xij = (Z(si + h; tj + τ) − Z(si; tj))2 ,
∀si, tj . These new variables will be shortened by Xu, u = 1, ...n, and will be
considered as a sample of a new variable X = (Z(s + h; t + τ) − Z(s; t))2,
defined from the lags of Z in space and time. Now, the parameter of interest is
2 γz(h; τ) = E[X] , and the problem proposed in the paper is now the problem of
estimating the expectation of the random variable X, obtained from the original
Z through this transformation.

If can accept a linear semivariogram for the n original observations Zu and
linear cross-variograms for each pair (Zi, Zk), then we can admit independence
in the Xu (Garćıa-Pérez 2022b, Sect. 4).

Considering a scale contaminated normal model for the original Zu observa-
tions, the distribution of the transformed variables Xu is, (Garćıa-Pérez 2022b,
Sect. 2.3)

F = (1 − ε) 2 γz(h; τ)χ2
1 + ε g2 2 γz(h; τ)χ2

1

where χ2
1 is a Chi-Square distribution with 1 degree of freedom.

When we think in trimming the data we have, mainly, two possibilities: First,
to consider all the Xu, u = 1, ..., n(h, τ), observations as homogenous to be
trimmed, or second, to trim by time moments.
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From a robustness point of view, trimming by time moments can hide outliers
if there is a time moment with many of them; so, it is worse than considering
all the observations at once. Hence, we shall choose the first option.

For this reason, we define the α-trimmed spatio-temporal variogram estima-
tor, 2 γ̂α(h; τ), defined again for the transformed n(h, τ) variables Xu as follows:

If we trim the 100 · α% of the smallest and the 100 · α% of the largest
ordered data X(u), the (symmetrically) sample α-trimmed spatio-temporal vari-
ogram estimator is defined as

2 γ̂α(h; τ) =
1

n(h, τ) − 2r

(

X(r+1) + ... + X(n(h,τ)−r)

)

= Xα

where r = [n(h, τ)α] if [ . ] stands for the integer part.
An asymmetric trimmed spatio-temporal variogram estimator could also be

a good option because the observations Xu are positive, since they come from
squared differences of the original Zu.

3 VOM+SAD Approximation of the Distribution
of the α-Trimmed Spatio-Temporal Variogram
Estimator

Obtaining the distribution of the estimator is necessary to be able to assess its
statistical properties and, specifically, its robustness properties. In addition, we
can make robust inferences with it such as intervals and robust tests. Moreover,
knowing its distribution is useful to reduce the number of temporal lags, as we
do in Garćıa-Pérez (2022b, Sect. 8) for M -estimators. Even, it would be possible
to choose a variogram model in a robust way, as we do in Garćıa-Pérez (2022a).

With a von Mises expansion (Von Mises 1947) we can obtain an approx-
imation (VOM approximation) for the distribution of the estimator under a
contaminated normal model, computing the approximation under just a normal
model, doing in this way the problem easier. This approximation depends on
the Hampel’s influence function of the tail probability functional. If we have a
small sample size, we can use a saddlepoint approximation (SAD approxima-
tion) to approximate this functional. Combining both approximations we obtain
a VOM+SAD approximation for the distribution of the estimator.

An accurate VOM+SAD approximation of the distribution of the sample α-
trimmed mean is obtained in Garćıa-Pérez (2016). We see there we can base our
approximation for the trimmed mean distribution on an approximation for the
classical sample mean. Hence, we can approximate the small sample distribution
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of the α-trimmed spatio-temporal variogram estimator, using the small sam-
ple distribution of the empirical spatio-temporal estimator, PF {2γ̂z(h; τ) > a}.
Namely, if the number of iterations k is large and also the approximation stabi-
lizes when we increase k, the approximation is

PF {2γ̂α(h; τ) > a} � (1 + n(h, τ) c1)k+1 (1 + n(h, τ) c2)k+1 PF {2γ̂z(h; τ) > a}

where c1 =
[

(1 − 2α)1/(k+1) − 1
]

and c2 =
[

1/(1 − 2α)1/(k+1) − 1
]

.
In Garćıa-Pérez (2022b) an accurate approximation for the distribution of the

empirical spatio-temporal estimator is obtained; hence, an accurate approxima-
tion for the tail probability of the sample α-trimmed spatio-temporal variogram
estimator 2γ̂α(h; τ), under a scale contaminated normal model, is

PF {2γ̂α(h; τ) > a} �(1 + n(h, τ) c1)k+1 (1 + n(h, τ) c2)k+1

[

P

{

χ2
n(h,τ) >

an(h, τ)
2γz(h; τ)

}

+ ε
√

n(h, τ)
2γz(h; τ)√

π(a − 2γz(h; τ))

· exp
{

−n(h, τ)
2

(

a

2γz(h; τ)
− 1 − log

a

2γz(h; τ)

)}

·
(

√

2γz(h; τ)
√

a − ag2 + 2 g2γz(h; τ)
− 1

)]

.

4 Example

Let us consider daily weather data, obtained in the US National Oceanic and
Atmospheric Administration (NOAA) National Climatic Data Center (Wikle
et al. 2019). In this data set we shall consider the variable Tmax, the daily
maximum temperature in Fahrenheit degrees.

The values of the Classical Spatio-Temporal Variogram Estimator, the 0.05-
trimmed spatio-temporal variogram estimator, the 0.1-trimmed spatio-temporal
variogram estimator and the 0.2-trimmed spatio-temporal variogram estima-
tor are given in the Supplementary Material, at https://www2.uned.es/pea-
metodos-estadisticos-aplicados/trimmed-spa-temp-variogram.htm.

In Fig. 1 here we plot the values of the 0.1-trimmed spatio-temporal vari-
ogram estimator obtained in this example.

It is possible to see in the Supplementary Material, p. 15, that there is some
differences between the 0.1-trimmed spatio-temporal variogram estimator and
the classical one, at some spatial and temporal lags, differences that could be
attributed to outliers.

https://www2.uned.es/pea-metodos-estadisticos-aplicados/trimmed-spa-temp-variogram.htm
https://www2.uned.es/pea-metodos-estadisticos-aplicados/trimmed-spa-temp-variogram.htm
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Fig. 1. Three-dimensional picture of the 0.1-trimmed spatio-temporal semivariogram
estimator of daily Tmax from the NOAA data during July 2003

5 Conclusions and Further Research

In this paper we define a new robust Trimmed Spatio-Temporal Variogram Esti-
mator and we give an accurate approximation of its distribution. As further
research we think that, with this approximation, we could test if it is possible
to reduce the number of temporal lags. We also think that it would be pos-
sible to obtain an approximation to the distribution of the difference of two
α-trimmed spatio-temporal variogram estimators with which we could detect
spatio-temporal outliers as it is done in Garćıa-Pérez (2022b) for M -estimators.
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Garćıa-Pérez, A.: Saddlepoint approximations for the distribution of some robust esti-

mators of the variogram. Metrika 83, 69–91 (2020)
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