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Abstract: Procrustes Analysis is a Morphometric method based on Configurations 
of Landmarks that estimates the superimposition parameters by least-squares; for 
this reason, the procedure is very sensitive to outliers. There are classical results, 
based on the normality of the observations, to test whether there are significant 
differences between individuals. In this paper we determine a Von Mises plus Saddlepoint 
approximation for the tail probability (p-value) of this test for the Procrustes 
Statistic, when the observations come from a model close to the normal. 
 
1 Introduction 
 
This paper is about a robust classification problem of n individuals based on their 
shapes, i.e., using their geometric information. The usual (classical or robust) methods 
based on Multivariate Analysis cannot extract all the geometric information 
from the individuals. For this reason, in recent years, morphometrics methods based 
on Configurations of landmarks have been developed. A landmark is a peculiar point 
whose position is common in all the individuals to classify. For instance, when we 
classify skulls, the landmarks could be the center of the supraorbital arch, the chin, 
etc.; or, if we classify projectile points found in an archaeological site, the landmarks 
could be the ends of the points. 
In all the cases, the mathematical (geometric) information that we obtain from 
the individuals is the k coordinates of their p landmarks, li = (ci1, . . . , cik), i = 
1, . . . , p. 
The matrix of landmarks coordinates is called a Configuration. For each individual 
with p landmarks of dimension k (where k is equal to 2 or 3) we have a collection 
of landmark coordinates expressed in p × k matrix as 
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M =
⎛
⎝ c11 · · · c1k

· · · · · · · · ·
cp1 · · · cpk

⎞
⎠

There are many morphometric methods; see for instance [1] or [3]. In this paper
we consider Superimposition Methods; namely, Procrustes Analysis, obtaining the
Procrustes coordinates and adapting the Configurations to a common (local) reference
system, matching them at the common center. For these reasons, a Local Coordinate
Reference System is needed and a Geographical Information System very useful.

A common graphical representation of a Configuration is a scatter plot of its
landmarks coordinates. Joining the resulting points with segments we obtaining a
polygon where the landmarks coordinates define the vertices of the polygon.

Because we use the shape of the individuals in their classification and shape
is a property of an object that is invariant under scaling, rotation and translation
(otherwise, for instance, an object and itself with double size could be classified
into two different groups), in order to classify them with a Procrustes Analysis, we
have first to remove the effect of Size (scale), Location (translation) and Orientation
(rotation) to standardize them and match them in a common center in order to make
them comparable.

This means that we have to estimate by least-squares the superimposition para-
meters α, β and Γ (scale, translation and rotation) in order to minimize the full
Procrustes distance dF between Configurations M1 and M2, i.e.,

min dF (M1, M2) = min ||M2 − αM1Γ − 1pβ
′||

= √
trace[(M2 − αM1 Γ − 1pβ ′)′(M2 − αM1 Γ − 1pβ ′)]

where α is a scalar representing the Size, β is a vector of k values corresponding to
a Location parameter formed by the centroid coordinates, 1p is a column vector of
dimension p × 1 and Γ a k × k square rotation matrix.

The idea that we pursue with this transformation is to match both Configurations,
i.e., a superimposition of M1 onto M2.

It is possible to use a Classical Morphometric Analysis from a descriptive point
of view. This is briefly exposed, together with its robustification by replacing the
classical estimators with robust ones, in [6].

2 Classical Morphometric Analysis from an Inferential
Point of View

Instead of considering a descriptive morphometric analysis it is more interesting to
test if there are significant differences between two Configurations. From a classical
point of view, we have the following result in [8, 11]: If X1 and X2 are two scaled
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and centered Configurations of dimension p × k, the Residual Distance between
Configurations X1 and X2 is defined as

||X2 − X1||2 = trace
[
(X2 − X1)

′(X2 − X1)
]
.

As saw before, the k × k square rotation matrix Γ is determined such that the
Procrustes distance between these two Configurations X1 and X2 (i.e., between land-
marks) is minimal

min
Γ

||X2 − X1Γ ||2 = min
Γ

trace
[
(X2 − X1 Γ )′(X2 − X1 Γ )

]
.

This minimum obtained after matching (i.e., after translation, rotation and scaling)
is called the Procrustes statistic:

G(X1, X2) = min
Γ

||X2 − X1Γ ||2.

Under the null hypothesis H0 that there is no systematic differences between
Configurations X1 and X2, i.e., they belong to the same group, or more precisely,
that if η is a constant, they are of the form

X2 = X1 + η e

where the p × k landmarks coordinates of Configuration e are univariate i.i.d.
N (0, 1), then

G(X1, X2) ≈ η2 χ2
g

i.e., Gs(X1, X2) = G(X1, X2)/η
2 ≈ χ2

g , where g = kp − k(k + 1)/2 − 1 . Hence,
we can compute tail probabilities (p-values) for testing H0. It must be p > (k +
1)/2 + 1/k and obviously an integer.

3 Robust Morphometric Analysis from an Inferential Point
of View

The standard normality of the landmarks coordinates is a very hard assumption. For
this reason we shall use robust methods for testing H0 assuming that the p × k land-
marks coordinates of e follow, not a standard normal distribution but a contaminated
normal model:

X2 − X1

η
� (1 − ε)N (0, 1) + εN (0, ν).
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In this section we are going to compute the tail probabilities (p-values), assuming
this contaminated model, using a VOM+SAD approximation.

We use this scale contaminated normal mixture model because the Configurations
are matched at the common centroid that is the new origin and equal to 0, being the
contamination in the scale the natural source of contamination in the observations.

3.1 Von Mises Approximations for the p-Value
of the Procrustes Statistic

In order to test the null hypothesis H0 that there is no systematic differences between
the standardized Configurations X1 and X2, using the Procrustes statistic Gs(X1, X2)

that follows a χ2
g distribution under a normal model, we have the following result.

Proposition 3.1 Let Gs(X1, X2) be the Procrustes statistic, that follows a χ2
g dis-

tribution when the underlying model is a normal distribution, Φμ,σ . If the previous
null hypothesis H0 holds, the von Mises (VOM) approximation for the functional tail
probability (if F is close to the normal Φμ,σ ) is

PF {Gs(X1, X2) > t} � g
∫ ∞

−∞
P{χ2

g−1 > t − (
x−μ

σ
)2} d F(x) − (g − 1)P{χ2

g > t}.

Proof The von Mises (VOM) approximation for the functional tail probability is (if
F is close to the normal Φμ,σ )

pF
g = PF {Gs(X1, X2) > t} � pΦ

g +
∫

TAIF(x; t;χ2
g , Φμ,σ ) d F(x) (1)

where TAIF is the Tail Area Influence Function defined in [4].
Replacing the normal model by the contaminated normal model Φε = (1 −

ε)Φμ,σ + ε δx and computing the derivative at ε = 0 we obtain that

TAIF(x; t;χ2
g , Φμ,σ ) = ∂

∂ε
PΦε {Gs(X1, X2) > t}

∣∣∣∣
ε=0

= g P{χ2
g−1 > t − (x − μ)2/σ 2} − g P{χ2

g > t}

integrating now, we obtain the result. �

Considering a scale contaminated normal (SCN) model

(1 − ε)N (0, 1) + εN (0, ν)



5

Table 1 Exact and
approximate p-values with
g = 3

t “Exact” Approximate

6 0′149 0′148

8 0′077 0′076

10 0′042 0′042

12 0′024 0′025

14 0′016 0′016

16 0′011 0′011

18 0′007 0′008

the VOM approximation is

pF
g � (1 − g ε)P{χ2

g > t} + g ε

∫ ∞

−∞
P{χ2

g−1 > t − x2} dΦ0,ν(x).

In Table 1 appear, [10], the Exact values (obtained through a simulation of 100.000
samples) and the VOM approximations when ε = 0′05, ν = 2 and g = 3.

To obtain the previous numerical results we had to deal with numerical integration.
Sometimes, we would like to have analytic expressions of pF

g to value the effect of
contamination ε, etc. For this reason, and for controlling the relative error of the
approximation, in the next section we shall compute the Saddlepoint approximation
for the p-value of the Procrustes Statistic.

3.2 Saddlepoint Approximations for the p-Value
of the Procrustes Statistic

Using Lugannani and Rice formula, [9], for the sample mean of g independent square
normal variables, we obtain the VOM+SAD approximation given in the next result.

Proposition 3.2 Let Gs(X1, X2)be the Procrustes statistic, that follows aχ2
g distrib-

ution when the underlying model is a normal distribution, Φμ,σ . If the null hypothesis
H0 holds, the saddlepoint approximation of the von Mises expansion, VOM+SAD
approximation, for the functional tail probability (if F is close to the normal Φμ,σ )
is

PF {Gs(X1, X2) > t} � P
{
χ2

g > t
} − B + B

∫ ∞

−∞

√
g√
t

e
(t−g)(x−μ)2

2tσ2 d F(x) (2)

where B = g
√

g√
π (t−g)

e−(t−g−g·log(t/g))/2.
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Proof If Gs(X1, X2) follows a χ2
g distribution, and Y1, . . . , Yg are g independent

gamma distributions γ (1/2, 1/2) with moment generating function M and cumulant
generating function K = log M , it is, following [2, 5, 9] or [7],

PΦ

{
Gs(X1, X2)

g
> t

}
= P

{
1

g

g∑
i=1

Yi > t

}

= 1 − Φs(w) + φs(w)

{
1

r
− 1

w
+ O(g−3/2)

}
(3)

where Φs and φs are the cumulative distribution and density functions of the standard
normal distribution.

If K is the cumulant generating function, that is the functional of Φμ,σ ,

K (θ) = log
∫ ∞

−∞
eθ (u−μ)2/σ 2

dΦμ,σ (u)

and z0 is the (functional) saddlepoint, i.e., it is the solution of the equation K ′(z0) = t ,
the functionals that appear in (3) are

w = sign(z0)
√

2 g · (z0 t − K (z0)) = √
g sign(z0)

√
2 (z0 t − K (z0)) := √

g w1

r = z0

√
g · K ′′(z0) = √

g z0

√
K ′′(z0) := √

g r1.

As we saw before, the VOM approximation for the tail probability depends on the
TAIF. To obtain the TAIF of Gs(X1, X2)/g at Φμ,σ we have to replace the model
Φμ,σ by the contaminated model Φε = (1 − ε)Φμ,σ + ε δx in all the functionals in
the right side of (3) that depend on Φμ,σ , and then to obtain the derivative at ε = 0;
this process is represented with a dot over the functional. Since φ′

s(w) = −φs(w) w
and φs(w) ≤ 1 , we obtain that

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= ∂

∂ε
PΦε

{
Gs(X1, X2)

g
> t

}∣∣∣∣
ε=0

= −φs(w)
•
w +φ′

s(w)
•
w

{
1

r
− 1

w
+ O(g−3/2)

}
+ φs(w)

{
−

•
r

r2 +
•
w

w2 + O(g−3/2)

}

= φs(w)

[
−w

•
w

r
−

•
r

r2
+

•
w

w2

]
+ O(g−1)
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= φs(w)

[
−

√
g w1

√
g

•
w1√

g r1
−

√
g

•
r1

g r2
1

+
√

g
•

w1

g w2
1

]
+ O(g−1)

= φs(w)

r1

[
−√

g · w1
•
w1

]
+ O(g−1/2)

because the functionals w1,
•
w1, r1 and

•
r1 do not depend on g. Since

•
w1= sign(z0)

2(
•
z0 t− •

K (z0))

2
√

2(z0 t − K (z0))
=

•
z0 t− •

K (z0))

w1

it will be

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= φs(w)

r1

√
g

[ •
K (z0)− •

z0 t
]

+ O(g−1/2). (4)

Hence, we have to compute the influence functions
•
K (z0) and

•
z0. To do this,

because

K ′(θ) =

∫ ∞

−∞
eθ (u−μ)2/σ 2

(
u − μ

σ

)2

dΦμ,σ (u)∫ ∞

−∞
eθ (u−μ)2/σ 2

dΦμ,σ (u)

from the saddlepoint equation, K ′(z0) = t , we obtain

∫ ∞

−∞
ez0 (u−μ)2/σ 2

[(
u − μ

σ

)2

− t

]
dΦμ,σ (u) = 0.

Replacing again the model by the contaminated model Φε = (1 − ε)Φμ,σ + ε δx

before obtaining the derivative at ε = 0, and making the change of variable (u −
μ)/σ = y, we obtain

•
z0

[∫ ∞

−∞
ez0 y2

y4 dΦs(y) − t
∫ ∞

−∞
ez0 y2

y2 dΦs(y)

]
+ ez0 (x−μ)2/σ 2

[(
x − μ

σ

)2

− t

]
= 0

i.e.,
•
z0= 1

2
t−5/2 e

(t−1)(x−μ)2

2tσ2

[
t −

(
x − μ

σ

)2
]

.
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In a similar way, we obtain that

•
K (z0) = 3

2
t−1/2 ez0 (x−μ)2/σ 2 − 1

2
t−3/2 ez0 (x−μ)2/σ 2

(
x − μ

σ

)2

− 1.

Also it is

r1 = z0

√
K ′′(z0) = t − 1√

2
and φs(w) = 1√

2π
e−g·(t−1−log t)/2.

Therefore, from (4), it will be

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= A

(
1√
t

e
(t−1)(x−μ)2

2tσ2 − 1

)
+ O(g−1/2)

where

A =
√

g√
π (t − 1)

e−g·(t−1−log t)/2.

From (1), we obtain now the VOM+SAD approximation for the p-value of the test
statistic Gs(X1, X2)/g,

PF

{
Gs(X1, X2)

g
> t

}
� P

{
χ2

g > g t
} − A + A

∫ ∞

−∞
1√
t

e
(t−1)(x−μ)2

2tσ2 d F(x)

and from this, we obtain the approximation (2) for the test statistic Gs(X1, X2). �

If F is the location contaminated normal mixture (LCN),

F = (1 − ε) N (0, 1) + ε N (θ, 1)

the VOM+SAD approximation is

PF {Gs(X1, X2) > t} � P
{
χ2

g > t
} + ε B

[
e−(1−t/g)θ2/2 − 1

]
.

In Table 2 appear the Exact values (obtained through simulation of 100.000 sam-
ples), the VOM and the VOM+SAD approximations when ε = 0′01, θ = 1 and
g = 5.

Corollary 3.1 To test the null hypothesis H0 that there is no systematic differences
between the standardized Configurations X1 and X2 with p landmarks of dimension
k (i.e., X1 and X2 belong to the same classification group) using the Procrustes
statistic Gs(X1, X2) and assuming that the error difference between Configurations
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Table 2 Exact and
approximate p-values with
g = 5

t “Exact” VOM appr. VOM+SAD
appr.

9 0′1125 0′1129 0′1136

11 0′0538 0′0539 0′0545

13 0′0251 0′0249 0′0253

15 0′0114 0′0112 0′0115

17 0′0050 0′0049 0′0051

19 0′0022 0′0022 0′0023

X2 − X1

η

follows a scale contamination normal model (1 − ε)N (0, 1) + εN (0, ν) , the
VOM+SAD approximation for the tail probability (p-value) is

P{Gs(X1, X2) > t} ≈ P{χ2
g > t} + ε

g3/2

√
π(t − g)

[ √
g√

t − ν2(t − g)
− 1

]

· exp

{
−1

2

(
t − g − g · log

t

g

)}
(5)

where g = kp − k(k + 1)/2 − 1. It must be p > (k + 1)/2 + 1/k and obviously an
integer.

Then, if k = 2, it is g = 2p − 4 and p > 2. And if k = 3, it is g = 3p − 7 and
p ≥ 3.

There are some applications of this approximation in [6]. There we test if there
are significance differences between dots of Notch tips and bay leaves, of Solutrense
period, that were found in caves of Asturias (Spain). We do this analysis using a
photo of the “Museo Arqueológico de Asturias” (Oviedo), including this photo in
QGIS as a raster layer.

4 Conclusions

Classical Morphometric Analysis based on Landmarks is not robust because it is
based on sample means and least-squares estimation using a Normal distribution as
model.

In this paper we consider a Contaminated Normal Model to make robust infer-
ences. Namely, for this mixture model we obtain an von Mises approximation of the
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p-value of a test for the null hypothesis of no significance differences between two
individuals based on their shapes.

We also obtain a very accurate saddlepoint approximation of this von Mises
approximation.
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